#二分,负环#JZOJ 3852 单词接龙】的更多相关文章

http://poj.org/problem?id=3621 求一个环的{点权和}除以{边权和},使得那个环在所有环中{点权和}除以{边权和}最大. 0/1整数划分问题 令在一个环里,点权为v[i],对应的边权为e[i],  即要求:∑(i=1,n)v[i]/∑(i=1,n)e[i]最大的环(n为环的点数),  设题目答案为ans,  即对于所有的环都有 ∑(i=1,n)(v[i])/∑(i=1,n)(e[i])<=ans  变形得ans* ∑(i=1,n)(e[i])>=∑(i=1,n)(v…
在加权有向图中求平均权值最小的回路. 一上手没有思路,看到“回路”,第一想法就是找连通分量,可又是加权图,没什么好思路,那就转换题意:由求回路权值->判负环,求最小值->常用二分答案. 二份答案,再利用利用bellman-ford判负环. 注意: 1.double:经常为了确定每个变量的类型,漏掉了某个变量,调半天心都凉了.干脆全变double. 2.没有告诉m的数据范围,要是在比赛中肯定有人问,要是reply是“read carefully”,总不能猜吧,乖乖用vector吧= = 3.原图…
题意描述: 见原LOJ:https://loj.ac/problem/10084 题解: 假设所求的平均最小值为X,环上各个边的权值分别为A1,A2...Ak,可以得到: X=(A1+A2+A3+...+Ak)/K, A1+A2+A3+...+Ak=X*K, 移项可得:(A1-X)+(A2-X)+(A3-X)+...+(Ak-X)=0, 另外注意到式子中的等于号可以改为大于等于,那么我们可以二分结果ans,然后判断是否存在一组解满足(A1+A2+A3+...+Ak)/k<=ans, 即判断:(A…
题面:[HNOI2009]最小圈 题目描述: 考虑带权的有向图\(G=(V,E)\)以及\(w:E\rightarrow R\),每条边\(e=(i,j)(i\neq j,i\in V,j\in V)\)的权值定义为\(w_{i,j}\),令\(n=|V|\).\(c=(c_1,c_2,\cdots,c_k)(c_i\in V)\)是\(G\)中的一个圈当且仅当\((c_i,c_{i+1})(1\le i\lt k)\)和\((c_k,c_1)\)都在\(E\)中,这时称\(k\)为圈\(c\)…
负环 Time Limit: 100 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 在忘记考虑负环之后,黎瑟的算法又出错了.对于边带权的有向图 G = (V, E),请找出一个点数最小的环,使得环上的边权和为负数.保证图中不包含重边和自环. Input 第1两个整数n, m,表示图的点数和边数. 接下来的m行,每<=三个整数ui, vi, wi,表<=有一条从ui到vi,权值为wi的有向边. Output 仅一行一…
题目背景 如果你能提供题面或者题意简述,请直接在讨论区发帖,感谢你的贡献. 题目描述 对于一张有向图,要你求图中最小圈的平均值最小是多少,即若一个圈经过k个节点,那么一个圈的平均值为圈上k条边权的和除以k,现要求其中的最小值 输入输出格式 输入格式: 第一行2个正整数,分别为n和m 以下m行,每行3个数,表示边连接的信息, 输出格式: 一行一个数,表示最小圈的值,保留8位小数. 输入输出样例 输入样例#1: 复制 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 输出样例#1:…
UVA11090 Going in Cycle!! 二分答案,用spfa判负环. 注意格式:图不一定连通. 复杂度$O(nmlog(maxw-minw))$ #include<iostream> #include<cstdio> #include<cstring> #include<queue> #include<cmath> #define re register using namespace std; typedef double db;…
layout: post title: 训练指南 UVA - 11090(最短路BellmanFord+ 二分判负环) author: "luowentaoaa" catalog: true mathjax: true tags: - 最短路 - 基础DP - BellmanFord - 图论 - 训练指南 Going in Cycle!! UVA - 11090 题意 就最小的环的平均权值 题解 分枚举平均值mid,只需判断是否存在平均值小于mid的回路,即判断是否有sum(wi)&…
题目链接 BZOJ3597 题解 orz一眼过去一点思路都没有 既然是流量网络,就要借鉴网络流的思想了 我们先处理一下那个比值,显然是一个分数规划,我们二分一个\(\lambda = \frac{X - Y}{k}\) 如果\(\lambda\)成立,则 \[\lambda \le \frac{X - Y}{k}\] 即 \[\lambda k + (Y - X) \le 0\] 所以我们只需要判断是否存在一种方案使得这个式子成立 依照网络流的思想,撤回流量就往反向边走,扩展流量往正向边 对于边…
题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the big city! The cows must decide how best to spend their free time. Fortunately, they have a detailed city map showing the L (2 ≤ L ≤ 1000) major landma…