K8S 性能优化-K8S Node 参数调优】的更多相关文章

前言 继<Spark性能优化:开发调优篇>和<Spark性能优化:资源调优篇>讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化指南>的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问题. 1.数据倾斜调优 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多.数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业…
前言 K8S 性能优化系列文章,本文为第三篇:Kubernetes 大型集群 CIDR 配置最佳实践. 系列文章: <K8S 性能优化 - OS sysctl 调优> <K8S 性能优化 - K8S APIServer 调优> CIDR 配置 在安装大型集群或将现有的集群扩展到较大规模时,在安装集群设置集群网络 cidr 时,如果集群的节点数超过 500 个,则可能无法使用常用的集群网络 cidr /14(这里假设的是一个 Node 的 hostPrefix 是 /23,那么理论上…
前言 K8S 性能优化系列文章,本文为第一篇:OS sysctl 性能优化参数最佳实践. 参数一览 sysctl 调优参数一览 # Kubernetes Settings vm.max_map_count = 262144 kernel.softlockup_panic = 1 kernel.softlockup_all_cpu_backtrace = 1 net.ipv4.ip_local_reserved_ports = 30000-32767 # Increase the number o…
原文来自:http://bbs.csdn.net/topics/310110257 本文只做整理记录,供个人学习. 1 JVM参数调优是个很头痛的问题,设置的不好,JVM不断执行Full GC,导致整个系统变得很慢,网站停滞时间能达10秒以上,这种情况如果没隔几分钟就来一次,自己都受不了.这种停滞在测试的时候看不出来,只有网站pv达到数十万/天的时候问题就暴露出来了. 要想配置好JVM参数,需要对年轻代.年老代.救助空间和永久代有一定了解,还要了解jvm内存管理逻辑,最终还要根据自己的应用来做调…
1.limit限制调整 一般情况下,Limit语句还是需要执行整个查询语句,然后再返回部分结果. 有一个配置属性可以开启,避免这种情况---对数据源进行抽样 hive.limit.optimize.enable=true --- 开启对数据源进行采样的功能 hive.limit.row.max.size --- 设置最小的采样容量 hive.limit.optimize.limit.file --- 设置最大的采样样本数 缺点:有可能部分数据永远不会被处理到   2.JOIN优化 1).  将大…
只要业务逻辑代码写正确,处理好业务状态在多线程的并发问题,很少会有调优方面的需求.最多就是在性能监控平台发现某些接口的调用耗时偏高,然后再发现某一SQL或第三方接口执行超时之类的.如果你是负责中间件或IM通讯相关项目开发,或许就需要偏向CPU.磁盘.网络及内存方面的问题排查及调优技能 CPU过高,怎么排查问题 linux内存 磁盘IO 网络IO java 应用内存泄漏和频繁 GC java 线程问题排查 常用 jvm 启动参数调优 介绍一下linux 调优相关命令,传送门:开发必备linux命令…
摘要: 1 shuffle原理 1.1 mapreduce的shuffle原理 1.1.1 map task端操作 1.1.2 reduce task端操作 1.2 spark现在的SortShuffleManager 2 Shuffle操作问题解决 2.1 数据倾斜原理 2.2 数据倾斜问题发现与解决 2.3 数据倾斜解决方案 3 spark RDD中的shuffle算子 3.1 去重 3.2 聚合 3.3 排序 3.4 重分区 3.5 集合操作和表操作 4 spark shuffle参数调优…
Linux内核 TCP/IP.Socket参数调优 2014-06-06  Harrison....   阅 9611  转 165 转藏到我的图书馆   微信分享:   Doc1: /proc/sys/net目录 所有的TCP/IP参数都位于/proc/sys/net目录下(请注意,对/proc/sys/net目录下内容的修改都是临时的,任何修改在系统重启后都会丢失),例如下面这些重要的参数: 参数(路径+文件) 描述 默认值 优化值 /proc/sys/net/core/rmem_defau…
xgboost入门非常经典的材料,虽然读起来比较吃力,但是会有很大的帮助: 英文原文链接:https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/ 原文地址:Complete Guide to Parameter Tuning in XGBoost (with codes in Python) 译注:文内提供的代码和运行结果有一定差异,可以从这里下…
XGBoost参数调优完全指南(附Python代码):http://www.2cto.com/kf/201607/528771.html https://www.zhihu.com/question/41354392 [以下转自知乎] https://www.zhihu.com/question/45487317 为什么xgboost/gbdt在调参时为什么树的深度很少就能达到很高的精度? XGBoost除去正则和并行的优化,我觉得和传统GBDT最核心的区别是:1. 传统GBDT的每颗树学习的是…