这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于Deep Learning Processors的Slides笔记,主要参考了[1]中的笔记,自己根据paper和slides读一遍,这里记一下笔记,方便以后查阅. 14.1 A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28…
想着CSDN还是不适合做论文类的笔记,那里就当做技术/系统笔记区,博客园就专心搞看论文的笔记和一些想法好了,[]以后中框号中间的都算作是自己的内心OS 有时候可能是问题,有时候可能是自问自答,毕竟是笔记嘛 心路历程记录:然后可能有很多时候都是中英文夹杂,是因为我觉得有些方法并没有很好地中文翻译的意思(比如configuration space),再加上英文能更好的搜索.希望大家能接受这种夹杂写法,或者接受不了的话直接关掉这个看原文 前言:这是一篇02年的关于Motion Planning - P…
[论文阅读] ALM-HCS(高对比场景自适应对数映射) 文章: Adaptive Logarithmic Mapping for Displaying High Contrast Scenes 1. 论文目的 将高动态范围图像映射到机器可以显示的动态范围, 作者提出了几个要求: The design of our tone mapping technique was guided by a few rules. It must provide consistent results despit…
首先这是2018年一篇关于概念漂移综述的论文[1]. 最新的研究内容包括 (1)在非结构化和噪声数据集中怎么准确的检测概念漂移.how to accurately detect concept drift in unstructured and noisy datasets (2)怎么用一种可解释的方法来定量理解概念漂移.how to quantitatively understand concept drift in a explainable way (3)如何有效的结合相关知识和概念漂移.…
白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 2.  论文思路和方法 1)  问题范围: 单词识别 2)  CNN层:使用标准CNN提取图像特征,利用Map-to-Sequence表示成特征向量: 3)  RNN层:使…
前两天,我和大家谈了如何阅读教材和备战数模比赛应该积累的内容,本文进入到数学建模七日谈第三天:怎样进行论文阅读. 大家也许看过大量的数学模型的书籍,学过很多相关的课程,但是若没有真刀真枪地看过论文,进行过模拟比赛,恐怕还是会捉襟见肘,不能够游刃有余地应对真正比赛中可能会遇到的一些困难.笔者就自己的经验稍稍给大家谈谈,在看了很多数学模型的书籍之后,如何通过论文阅读,将我们的水平上升一个新的台阶,达到一个质的飞跃! 首先,大家要搞清楚教材和论文的区别.教材的主要目的是介绍方法,前人总结出来的最经典的…
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http://blog.csdn.net/colorant/article/details/8256145 == 目标问题 == 下一代的Hadoop框架,支持10,000+节点规模的Hadoop集群,支持更灵活的编程模型 == 核心思想 == 固定的编程模型,单点的资源调度和任务管理方式,使得Hadoop 1…
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http://blog.csdn.net/colorant/article/details/8256145 == 目标问题 == 为了提高资源的利用率以及满足不同应用的需求,在同一集群内会部署各种不同的分布式运算框架(cluster computing framework),他们有着各自的调度逻辑. Mesos…
本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但传统的seq2seq存在很多问题.本文就提出了两个问题: 1)传统的seq2seq模型倾向于生成安全,普适的回答,例如“I don’t know what you are talking about”.为了解决这个问题,作者在更早的一篇文章中提出了用互信息作为模型的目标函数.具体见A Diversi…
论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, built using word co-occurrence statistics as per the distributional hypothesis. 分布式假说(distributional hypothesis) word with similar contexts have the…