多项式的基本运算(FFT和NTT)总结】的更多相关文章

设参与运算的多项式最高次数是n,那么多项式的加法,减法显然可以在O(n)时间内计算. 所以我们关心的是两个多项式的乘积.朴素的方法需要O(n^2)时间,并不够优秀. 考虑优化. 多项式乘积 方案一:分治乘法. 对于多项式X,Y,假设各有2m项,(即最高次数是2m-1) X,Y分别可以用两个含m项的多项式来表示,即: 则 由此可见,为了计算XY,只需计算出AC, (A+B)(C+D), BD,然后用多项式加减法求得XY即可. 设含有m项的多项式相乘的时间为T(m) 则 于是容易算出时间复杂度是,约…
多项式: 多项式?不会 多项式加法: 同类项系数相加: 多项式乘法: A*B=C $A=a_0x^0+a_1x^1+a_2x^2+...+a_ix^i+...+a_{n-1}x^{n-1}$ $B=b_0x^0+b_1x^1+b_2x^2+...b_ix^i+...+b_{m-1}x^{m-1}$ 则 $C=c_0x^0+c_1x^1+c_2x^2+...c_ix^i+...+c_{m+n-2}x^{m+n-2}$ 其中 $$c_k=\sum_{i+j=k}^{i<n,j<m}a[i]b[j]…
https://www.luogu.org/problemnew/show/P3803 看别人偏偏就是要用NTT去过.实验证明大概是这样用.求0~n的多项式和0~m的多项式的乘积.注意MAXN取值.A数组的大小必须足以容纳大于等于A+B总size的最小的2的幂次.干脆就直接取4倍? #include <bits/stdc++.h> using namespace std; typedef long long ll; const int MAXN = 4e6, mod = 998244353;…
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理都非常到位的总结 推荐ppl巨佬的简明易懂的总结 FFT 多项式乘法的蹊径--点值表示法 一般我们把两个长度为\(n\)的多项式乘起来,就类似于做竖式乘法,一位一位地乘再加到对应位上,是\(O(n^2)\)的 如何优化?直接看是没有思路的,只好另辟蹊径了. 多项式除了我们常用的系数表示法\(y=a_…
做了四五天的专题,但是并没有刷下多少题.可能一开始就对多项式这块十分困扰,很多细节理解不深. 最简单的形式就是直接两个多项式相乘,也就是多项式卷积,式子是$N^2$的.多项式算法的过程就是把卷积做一种变换,在变换后各系数相称得到新系数.其实这一步变换的构造过程挺深奥的,并不是很会.对于多项式卷积的变换就是点值.于是就有了快速变换这样的算法. 细节问题出过很多.边界的问题容易弄错.一般如果是两个N项多项式相乘,得到的是一个$2*N-1$项的多项式,这是存在系数的,只不过一般我们只要N项的结果,所以…
前言 快速傅里叶变换(\(\text{Fast Fourier Transform,FFT}\) )是一种能在\(O(n \log n)\)的时间内完成多项式乘法的算法,在\(OI\)中的应用很多,是多项式相关内容的基础.下面从头开始介绍\(\text{FFT}\). 前置技能:弧度制.三角函数.平面向量. 多项式 形如\(f(x)=a_0+a_1x+a_2x^2+...+a_nx^n\)的式子称为\(x\)的\(n\)次多项式.其中\(a_0,a_1,...,a_n\)称为多项式的系数. 系数…
FFT和NTT学习笔记 算法导论 参考(贺) http://picks.logdown.com/posts/177631-fast-fourier-transform https://blog.csdn.net/qq_38944163/article/details/81835205 https://www.cnblogs.com/RabbitHu/p/FFT.html [TOC] 概述 目的 以$O(nlg_n)$的时间复杂度计算多项式乘法 多项式的表达 系数表达: \(\{a_0, a_1,…
一个套路:把式子推成卷积形式,然后用fft或ntt优化求解过程. fft的扩展性不强,不可以在fft函数里多加骚操作--DeepinC T1:多项式乘法 板子题 T2:快速傅立叶之二 另一个板子,小技巧:把一个数组反转过来,以符合卷积形式 T3:力 拆式子,把qj除到左边,然后把大于j的贡献和小于j的贡献分开考虑,对于小于j的,直接用fft统计,对于大于的,先反转再fft T4:Normal 大神题,考虑把贡献拆成点对,对于两个点i与j,若i能对j作出贡献,则i到j的路径上没有断点,同样删除i到…
先不管旋转操作,考虑化简这个差异值 $$begin{aligned}sum_{i=1}^n(x_i-y_i-c)^2&=sum_{i=1}^n(x_i-y_i)^2+nc^2-2csum_{i=1}^n(x_i-y_i)\&=sum_{i=1}^nx_i^2+sum_{i=1}^ny_i^2+nc^2-2csum_{i=1}^n(x_i-y_i)-2sum_{i=1}^nx_iy_iend{aligned}$$ 注意到$sum x^2+sum y^2$是常数,先不管 可以发现,这是一个关于…
P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示F(x)的系数. 接下来一行m+1个数字,从低到高表示G(x))的系数. 输出格式: 一行n+m+1个数字,从低到高表示F(x)∗G(x)的系数. 输入输出样例 输入样例#1: 复制 1 2 1 2 1 2 1 输出样例#1: 复制 1…