#define Inf 65535 #include <iostream> using namespace std; void FindMaxCrossingSubarray(int *Array, int low, int mid, int high, int &maxLeft,int &maxRight, int &sum); void FindMaxmumSubarry(int *Array,int low,int high, int &relow,int…
Coding算法导论 本系列文章主要针对算法导论一书上的算法,将书中的伪代码用C++实现 代码未经过大量数据测试,如有问题,希望能在回复中指出! (一)问题描述 给定一个数组,求数组中连续的子数组的和,找出和的最大值.如 数组A:-1,-4,4,3,2,-3 应该返回最大值9. (二)问题求解 本题想到了两个思路:暴力求解法和分治法.前者就不多说了,本文主要讨论分治法. 分治法的大致思路:对于A[low,high]这个数组,任何的连续子数组A[i,j]的位置必然是一下三种情况之一: 完全位于子数…
<算法导论>第二章demo代码实现(Java版) 前言 表示晚上心里有些不宁静,所以就写一篇博客,来缓缓.囧 拜读<算法导论>这样的神作,当然要做一些练习啦.除了练习题与思考题那样的理论思考,也离不开编码的实践. 所以,后面每个章节,我都会尽力整理出章节中涉及的算法的Java代码实现. 二分查找 算法实现 package tech.jarry.learning.test.algorithms.binarysearch; public class BinarySearch { pub…
6.1堆 卫星数据:一个带排序的的数通常是有一个称为记录的数据集组成的,每一个记录有一个关键字key,记录的其他数据称为卫星数据. 原地排序:在排序输入数组时,只有常数个元素被存放到数组以外的空间中去. 在第二章介绍了两种排序:插入排序和合并排序,接下来两章要介绍的是推排序和快速排序,这四个排序都属于比较排序(comparison sort). 快速排序的性能一般优先于堆排序 二叉堆是一个数组(b),近似完全二叉树(a) 数组(b) 实际的存储形势 二叉树(a) 要表达的结构 [1,A.heap…
红黑树是上一章二叉搜索树的改进,实现一种平衡 ,保证不会出现二叉树变链表的情况,基本动态集合操作的时间复杂度为O(lgn) 实际用途:c++stl中的set,map是用他实现的 红黑树的性质: 1.每个结点或是红色的,或是黑色的 2.跟结点是黑色的 3.每个叶结点(NIL)是黑色 4.如果一个结点是红色的,则它的两个结点都是黑色的 5.对每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同的数目的黑色结点(数目被称为黑高bh(x)) 如下图: (T.nil 哨兵后面被忽略 None) 红…
第三章 渐进的基本O().... 常用函数 % 和  // 转换 斯特林近似公式 斐波那契数 第四章 分治策略:分解(递归)--解决(递归触底)--合并 求解递归式的3种方法: 1:代入法(替代法):猜测一个(靠经验)--数学归纳法 ·2:递归树法:画树p31[第3版中文]p51->递归式--证明 3:主方法: 快速,有些地方不能涉及,递归式不易写出 4.1最大数组问题 分治法: 1.A[low ,mid]  2.A[mid+1, high] 3.包含mid中间(想左和右分别遍历组合找出最大)…
这题利用二叉堆维持堆性质的办法来维持Young氏矩阵的性质,题目提示中写得很清楚,不过确实容易转不过弯来. a,b两问很简单.直接看c小问: 按照Young氏矩阵的性质,最小值肯定在左上角取得,问题在于取出最小值后如何保持矩阵的性质.可以参照max_heapify中的做法,先取出最小值,然后将矩阵左上角置为最大值,这样左上角处的元素必然导致Young氏矩阵的性质违背,于是考虑该元素右边的元素和该元素下边的元素,问题是该与右边元素交换还是与下边元素交换呢?可以发现,如果与T(右)和T(下)中较小的…
d叉堆的实现相对于二叉堆变化不大,首先看它如何用数组表示. 考虑一个索引从1开始的数组,一个结点i最多可以有d个子结点,编号从id - (d - 2) 到 id + 1. 从而可以知道一个结点i的父结点计算方法为: (i + d - 2) / d. 第二个问题是 一个含有n个元素的d叉堆的高度,就是一个简单的等比数列的问题,可以知道的是一颗高度为h的满d叉树所含的结点数目为(d^(h +1) - 1) / (d - 1) 从而一颗含有 n个结点的d叉树满足的条件为: ,从而得到高度h为: 接下来…
用的最多的排序 平均性能:O(nlogn){随机化nlogn} 原地址排序 稳定性:不稳定 思想:分治 (切分左右) 学习方式:自己在纸上走一遍   def PARTITION(A,p,r): x = A[r] # 锚点 主元{大于它放一边,小于的放另一边} i = p - 1 for j in range(p,r): if A[j] <= x: i += 1 A[i],A[j] = A[j],A[i] A[i+1],A[r] = A[r],A[i+1] return i + 1 def QUI…
优先队列:     物理结构: 顺序表(典型的是数组){python用到list}     逻辑结构:似完全二叉树 使用的特点是:动态的排序..排序的元素会增加,减少#和快速排序对比 快速一次排完 增加元素要重排(或许是插入)                         随插随排                         每次拿一个最大(最大(优先队列/堆))或最小 关键注意点:     A.length:元素个数 #python 我将用len(A) - 1  #第一位将用-1舍弃  …