np.frombuffer()】的更多相关文章

numpy.frombuffer numpy.frombuffer(buffer, dtype=float, count=-1, offset=0) Interpret a buffer as a 1-dimensional array. Parameters: buffer : buffer_like An object that exposes the buffer interface. dtype : data-type, optional Data-type of the returne…
Numpy中的ndarray是一种新形式的Python内建类型.因此,它可以在需要时被继承.ndarray形成了许多有用类的基础. np.memmap就是其中一种,它是内存映射文件.本质上就是使用C语言中的fseek随机访问文件的任何一个位置执行读写操作.当一个特别大的数组无法常驻内存时,np.memmap非常有用. 参数类型: filename:字符串.文件或者path dtype:默认为uint8,表示每个字节 mode:支持r+,r,w+,c四种文件打开方式,r表示只读方式打开文件爱你,r…
深度学习之 GAN 进行 mnist 图片的生成 mport numpy as np import os import codecs import torch from PIL import Image import PIL def get_int(b): return int(codecs.encode(b, 'hex'), 16) def extract_image(path, extract_path): with open(path, 'rb') as f: data = f.read(…
深度学习之 mnist 手写数字识别 开始学习深度学习,先来一个手写数字的程序 import numpy as np import os import codecs import torch from PIL import Image lr = 0.01 momentum = 0.5 epochs = 10 def get_int(b): return int(codecs.encode(b, 'hex'), 16) def read_label_file(path): with open(pa…
Windows 10 编译 Pycocotools 踩坑记 COCO数据库简介 微软发布的COCO数据库, 除了图片以外还提供物体检测, 分割(segmentation)和对图像的语义文本描述信息. COCO数据库的网址是: MS COCO API - http://mscoco.org/ Github网址 - https://github.com/pdollar/coco 关于API更多的细节在网站: http://mscoco.org/dataset/#download 数据库提供 Matl…
系列文章地址 NumPy 最详细教程(1):NumPy 数组 NumPy 超详细教程(2):数据类型 NumPy 超详细教程(3):ndarray 的内部机理及高级迭代 文章目录 Numpy 数组:ndarrayNumPy 数组属性1.ndarray.shape2.ndarray.ndim3.ndarray.flags4.ndarray.realNumPy 中的常数NumPy 创建数组1.numpy.empty2.numpy.zeros3.numpy.ones4.numpy.fullNumPy…
基本分类 基本分类(Basic classification):https://www.tensorflow.org/tutorials/keras/basic_classification Fashion MNIST数据集 经典 MNIST 数据集(常用作计算机视觉机器学习程序的“Hello, World”入门数据集)的简易替换 包含训练数据60000个,测试数据10000个,每个图片是28x28像素的灰度图像,涵盖10个类别 https://keras.io/datasets/#fashio…
#导入科学计算库 #起别名避免重名 import numpy as np #小技巧:从外往内看==从左往右看 从内往外看==从右往左看 #打印版本号 print(np.version.version) #1.16.2 #声明一个numpy数组,一层list nlist = np.array([1,2,3]) print(nlist) #[1 2 3] #ndim方法用来查看数组的属性--维度 print(nlist.ndim) #1 #使用shape属性来打印多维数组的形状,返回一个tuple,…
#起别名避免重名 import numpy as np #小技巧:print从外往内看==shape从左往右看 if __name__ == "__main__": print('numpy版本号 {}'.format(np.version.version)) n_1 = np.array([1,2,3]) print('\n{} \n{} 维数组 \n{} 形状包含元素个数'.format(n_1, n_1.ndim, n_1.shape)) n_2 = np.array([[1,2…
 1. 启动Kafka Server bin/kafka-server-start.sh config/server.properties & 2. 创建一个新topic bin/kafka-topics.sh --create --zookeeper xxxx --replication-factor 1 --partitions 1 --topic video 3. 安装相关依赖 sudo pip-3.6 install kafka-python opencv-contrib-python…