HBase Rowkey的散列与预分区设计】的更多相关文章

转自:http://www.cnblogs.com/bdifn/p/3801737.html 问题导读:1.如何防止热点?2.如何预分区?扩展:为什么会产生热点存储? HBase中,表会被划分为1...n个Region,被托管在RegionServer中.Region二个重要的属性:StartKey与EndKey表示这个Region维护的rowKey范围,当我们要读/写数据时,如果rowKey落在某个start-end key范围内,那么就会定位到目标region并且读/写到相关的数据.简单地说…
HBase是三维有序存储的,是指rowkey(行键),column key(column family和qualifier)和TimeStamp(时间戳)这个三个维度是依照ASCII码表排序的. HBase中,表会被划分为1...n个Region,被托管在RegionServer中.Region二个重要的属性:StartKey与EndKey表示这个Region维护的rowKey范围,当我们要读/写数据时,如果rowKey落在某个start-end key范围内,那么就会定位到目标region并且…
Hbase的表会被划分为1....n个Region,被托管在RegionServer中.Region二个重要的属性:Startkey与EndKey表示这个Region维护的rowkey的范围,当我们要读写数据时,如果rowkey落在某个start-end key范围内,那么就会定位到目标region并且读写到相关的数据. 默认情况下,当我们通过hbaseAdmin指定TableDescriptor来创建一张表时,只有一个region正处于混沌时期,start-end key无边界,可谓海纳百川.…
热点发生在大量的client直接访问集群的一个或极少数个节点(访问可能是读,写或者其他操作).大量访问会使热点region所在的单个机器超出自身承受能力,引起性能下降甚至region不可用,这也会影响同一个RegionServer上的其他region,由于主机无法服务其他region的请求,造成资源浪费.设计良好的数据访问模式以使集群被充分,均衡的利用. 数据倾斜:Hbase可以被划分为多个Region,但是默认创建时只有一个Region分布在集群的一个节点上,数据一开始时都集中在这个Regio…
前言:在系统中向hbase中插入数据时,常常通过设置region的预分区来防止大数据量插入的热点问题,提高数据插入的效率,同时可以减少当数据猛增时由于Region split带来的资源消耗.大量的预分区数量会导致hbase客户端缓存大量的分区地址,导致内存的增长,某些系统中一个JVM进程中会开启几十个独立的hbase客户端对象,同时会查询多张Hbase表,这样JVM进程就会缓存 (预分区数 X 表数 X Hbase客户端数=条记录). 有没有这种情况?有的,在本人的storm项目中,采用结合sp…
Hbase默认建表是只有一个分区的,开始的时候所有的数据都会查询这个分区,当这个分区达到一定大小的时候,就会进行做split操作: 因此为了确保regionserver的稳定和高效,应该尽量避免region分裂和热点的问题: 那么有的同学在做预分区的时候,可能是按照: 1): 通过Hbase提供的api: bin/hbase org.apache.hadoop.hbase.util.RegionSplitter demo1 HexStringSplit -c 10 -f info 默认建表是没有…
Hbas预分区 在系统中向hbase中插入数据时,常常通过设置region的预分区来防止大数据量插入的热点问题,提高数据插入的效率,同时可以减少当数据猛增时由于Region split带来的资源消耗.大量的预分区数量会导致hbase客户端缓存大量的分区地址,导致内存的增长,某些系统中一个JVM进程中会开启几十个独立的hbase客户端对象,同时会查询多张Hbase表,这样JVM进程就会缓存 (预分区数 X 表数 X Hbase客户端数=条记录). storm的自定义分组 有没有这种情况?有的,在本…
提前生成Hbase预分区种子,在创建Hbase表时也进行相应的预分区,同时设置预分区的个数,预分区的范围对应Hbase监控页面的Region Server的start key与End key,从而使数据能够均匀的分布于各个Region中.给捷哥赞一个~ private static final String[] PARTITIONS = generatPartitionSeed(); //生成3844个分区种子 public static String[] generatPartitionSee…
HBase中的rowkey是按字典顺序排序的,通过rowkey查询可以对千万级的数据实现毫秒级响应.然而,如果rowkey设计不合理的话经常会出现一个很普遍的问题----热点.当大量client的请求(读或者写)只指向集群的一个节点,或者很少量的几个节点时,也就代表产生了热点问题. 避免产生热点的方式也就是尽可能的将rowkey均匀分散到所有的region上,下面介绍了几种rowkey设计常用的方式: 第一:加盐(salting) 加盐是指在rowkey的前缀添加随机数据,使rowkey尽可能的…
Rowkey设计 Rowkey设计原则 Rowkey设计应遵循以下原则: 1.Rowkey的唯一原则 必须在设计上保证其唯一性.由于在HBase中数据存储是Key-Value形式,若HBase中同一表插入相同Rowkey,则原先的数据会被覆盖掉(如果表的version设置为1的话),所以务必保证Rowkey的唯一性 2. Rowkey的排序原则 HBase的Rowkey是按照ASCII有序设计的,我们在设计Rowkey时要充分利用这点.比如视频网站上对影片<泰坦尼克号>的弹幕信息,这个弹幕是按…