保存在github上供广大网友下载:点击 8个zip,原文件,没有任何改动. 另外,不定期上传我自己关于这门课的学习过程笔记和心得,有兴趣的盆友可以点击这里查看.…
Week 1 机器学习笔记(一)基本概念与单变量线性回归 Week 2   机器学习笔记(二)多元线性回归 机器学习作业(一)线性回归——Matlab实现 机器学习作业(一)线性回归——Python(numpy)实现 Week 3   机器学习笔记(三)逻辑回归 机器学习作业(二)逻辑回归——Matlab实现 机器学习作业(二)逻辑回归——Python(numpy)实现 Week 4   机器学习笔记(四)神经网络的基本概念 机器学习作业(三)多类别分类与神经网络——Matlab实现 机器学习作…
Week1: Machine Learning: A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. Supervised Learning:We alr…
Week 1: Machine Learning: A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. Supervised Learning:We al…
1.问题描述 有209张图片作为训练集,50张图片作为测试集,图片中有的是猫的图片,有的不是.每张图片的像素大小为64*64 吴恩达并没有把原始的图片提供给我们 而是把这两个图片集转换成两个.h5文件:train_catvnoncat.h5(训练集),test_catvnoncat.h5(测试集). 这三这个文件的下载地址:https://pan.baidu.com/s/1bL8SC3gNxbzL9Xo4C6ybow    提取码: iaq7  这个h5文件是一种数据文件格式,关于它的写入和读取…
吴恩达(Andrew Ng)机器学习课程:课程主页 由于博客编辑器有些不顺手,所有的课程笔记将全部以手写照片形式上传.有机会将在之后上传课程中各个ML算法实现的Octave版本. Linear Regression with One Variable Linear Algebra Review Linear Regression with Multiple Variables Octave/Matlab Tutorial…
一.准备工作 从网站上将编程作业要求下载解压后,在Octave中使用cd命令将搜索目录移动到编程作业所在目录,然后使用ls命令检查是否移动正确.如: 提交作业:提交时候需要使用自己的登录邮箱和提交令牌,如下: 二.单变量线性回归 绘制图形:rx代表图形中标记的点为红色的x,数字10表示标记的大小. plot(x, y, ); % Plot the data 计算代价函数(Cost Funtion):迭代次数1500,学习速率0.01.  iterations = 1500; alpha = 0.…
一.准备工作 从网站上将编程作业要求下载解压后,在Octave中使用cd命令将搜索目录移动到编程作业所在目录,然后使用ls命令检查是否移动正确.如: 提交作业:提交时候需要使用自己的登录邮箱和提交令牌,如下: 二.单变量线性回归 绘制图形:rx代表图形中标记的点为红色的x,数字10表示标记的大小. plot(x, y, ); % Plot the data 计算代价函数(Cost Funtion):迭代次数1500,学习速率0.01.  iterations = 1500; alpha = 0.…
多分类问题——识别手写体数字0-9 一.逻辑回归解决多分类问题 1.图片像素为20*20,X的属性数目为400,输出层神经元个数为10,分别代表1-10(把0映射为10). 通过以下代码先形式化展示数据 ex3data1.mat内容: load('ex3data1.mat'); % training data stored in arrays X, y m = size(X, ); %求出样本总数 % Randomly data points to display rand_indices =…
一. 逻辑回归 1.背景:使用逻辑回归预测学生是否会被大学录取. 2.首先对数据进行可视化,代码如下: pos = find(y==); %找到通过学生的序号向量 neg = find(y==); %找到未通过学生的序号向量 plot(X(pos,),X(pos,),,); %使用+绘制通过学生 hold on; plot(X(neg,),X(neg,),); %使用o绘制未通过学生 % Put some labels hold on; % Labels and Legend xlabel('E…