深度学习和web安全最新文章一览】的更多相关文章

先囤几篇文章: 1.https://www.cdxy.me/?p=773 2.https://segmentfault.com/a/1190000009052376 3.https://segmentfault.com/a/1190000008288950 4.http://www.freebuf.com/news/142069.html 5.http://www.freebuf.com/column/132796.html 6.http://www.freebuf.com/articles/w…
1 前言 Andrew Ng的UFLDL在2014年9月底更新了. 对于開始研究Deep Learning的童鞋们来说这真的是极大的好消息! 新的Tutorial相比旧的Tutorial添加了Convolutional Neural Network的内容.了解的童鞋都知道CNN在Computer Vision的重大影响. 而且从新编排了内容及exercises. 新的UFLDL网址为: http://ufldl.stanford.edu/tutorial/ 2 Linear Regression…
Softmax Regression Tutorial地址:http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/ 从本节開始,难度開始加大了.我将更具体地解释一下这个Tutorial. 1 Softmax Regression 介绍 前面我们已经知道了Logistic Regression.简单的说就推断一个样本属于1或者0.在应用中比方手的识别.那么就是推断一个图片是手还是非手.这就是非常easy的分类. 其实.我们仅…
1 Vectorization 简述 Vectorization 翻译过来就是向量化,各简单的理解就是实现矩阵计算. 为什么MATLAB叫MATLAB?大概就是Matrix Lab,最根本的差别于其它通用语言的地方就是MATLAB能够用最直观的方式实现矩阵运算.MATLAB的变量都能够是矩阵. 通过Vectorization,我们能够将代码变得极其简洁.尽管简洁带来的问题就是其它人看你代码就须要研究一番了.但不论什么让事情变得simple的事情都是值得去做的. 关于Vectorization核心…
1 Gradient Checking 说明 前面我们已经实现了Linear Regression和Logistic Regression.关键在于代价函数Cost Function和其梯度Gradient的计算. 在Gradient的计算中,我们一般採用推导出来的计算公式来进行计算. 可是我们看到,推导出来的公式是复杂的.特别到后面的神经网络,更加复杂.这就产生了一个问题,我们怎样推断我们编写的程序就是计算出正确的Gradient呢? 解决的方法就是通过数值计算的方法来估算Gradient然后…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
原文:http://developer.51cto.com/art/201501/464174.htm 编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.而且原文也会不定期的更新,望看到文章的朋友能够学到更多. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning i…
转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智…
编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.而且原文也会不定期的更新,望看到文章的朋友能够学到更多. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室 Ju…