1. 什么是GRU 在循环神经⽹络中的梯度计算⽅法中,我们发现,当时间步数较⼤或者时间步较小时,循环神经⽹络的梯度较容易出现衰减或爆炸.虽然裁剪梯度可以应对梯度爆炸,但⽆法解决梯度衰减的问题.通常由于这个原因,循环神经⽹络在实际中较难捕捉时间序列中时间步距离较⼤的依赖关系. 门控循环神经⽹络(gated recurrent neural network)的提出,正是为了更好地捕捉时间序列中时间步距离较⼤的依赖关系.它通过可以学习的⻔来控制信息的流动.其中,门控循环单元(gatedrecurren…
29 November 2019 14:48 GRU is a popular variant of LSTM which replaces the forget gate and the input gate with only one update gate GRU achieves the similar performance in multiple tasks with less computation LSTM 通过门控机制使循环神经网络不仅能记忆过去的信息,同时还能选择性地忘记一些…
一.GRU 其中, rt表示重置门,zt表示更新门. 重置门决定是否将之前的状态忘记.(作用相当于合并了 LSTM 中的遗忘门和传入门) 当rt趋于0的时候,前一个时刻的状态信息ht−1会被忘掉,隐藏状态h^t会被重置为当前输入的信息. 更新门决定是否要将隐藏状态更新为新的状态h^t(作用相当于 LSTM 中的输出门) . 二.GRU的优点:解决梯度消失的问题…
转自:https://www.infoq.cn/article/sliced-recurrent-neural-networks 1.门控循环单元 GRU GRU 由 reset gate r 和 update gate z 组成.Reset gate 决定有多少之前的记忆需要和新的输入结合,而 update gate 决定多少之前的记忆被保留下来. 其中 x 是输入,h 是隐状态. 候选隐状态 ht 由 reset gate 控制.当 reset gate 为 0 时,之前的记忆就被忽略了.…
5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.7对新序列采样 基于词汇进行采样模型 在训练完一个模型之后你想要知道模型学到了什么,一种非正式的方法就是进行一次新序列采样. 一个序列模型模拟了任意特定单词序列的概率,对新序列采样即是对概率分布进行采样来生成一个新的单词序列. 假设你的RNN训练模型为: 对于新序列进行采样第一步即是对想要模型生成的第一个词进行采样 设置\(a^{<0>}=0,x^{<1>}=0\)从而得到所有可能的输出结果\(\hat…
欢迎大家关注我们的网站和系列教程:http://panchuang.net/ ,学习更多的机器学习.深度学习的知识! 目录: 门控循环神经网络简介 长短期记忆网络(LSTM) 门控制循环单元(GRU) TensorFlow实现LSTM和GRU 参考文献 一.门控循环神经网络 门控循环神经网络在简单循环神经网络的基础上对网络的结构做了调整,加入了门控机制,用来控制神经网络中信息的传递.门控机制可以用来控制记忆单元中的信息有多少需要保留,有多少需要丢弃,新的状态信息又有多少需要保存到记忆单元中等.这…
参考1 参考2 参考3 1. 为什么选择序列模型 序列模型能够应用在许多领域,例如: 语音识别 音乐发生器 情感分类 DNA序列分析 机器翻译 视频动作识别 命名实体识别 这些序列模型都可以称作使用标签数据(X,Y)作为训练集的监督式学习,输入x和输出y不一定都是序列模型.如果都是序列模型的话,模型长度不一定完全一致. 2. Notation(标记) 下面以 命名实体识别 为例,介绍序列模型的命名规则.示例语句为: Harry Potter and Hermione Granger invent…
5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.3循环神经网络模型 为什么不使用标准的神经网络 假如将九个单词组成的序列作为输入,通过普通的神经网网络输出输出序列, 在不同的例子中输入数据和输出数据具有不同的长度,即每个数据不会有一样的长度 也许每个语句都有最大长度,能够通过Padding 的方式填充数据,但总体来说不是一个好的表达方式. 不共享从文本的不同位置上学到的特征 例如普通神经网络可以学习到Harry这个单词出现在\(x^{<1>}\)的位置,但是如果…
一.RNN的作用和粗略介绍: RNN可解决的问题: 训练样本输入是连续的序列,且序列的长短不一,比如基于时间的序列:一段段连续的语音,一段段连续的手写文字.这些序列比较长,且长度不一,比较难直接的拆分成一个个独立的样本来通过DNN/CNN进行训练. T个时间步: 我们先来看单个RNN cell: 简单的RNN前向传播实现过程: 以上代码实现: import numpy as np # 定义RNN的参数. X = [1,2] state = [0.0, 0.0] w_cell_state = np…
1.1为什么选择序列模型 (1)序列模型广泛应用于语音识别,音乐生成,情感分析,DNA序列分析,机器翻译,视频行为识别,命名实体识别等众多领域. (2)上面那些问题可以看成使用(x,y)作为训练集的监督学习,但是输入与输出的对应关系有非常多的组合,比如一对一,多对多,一对多,多对一,多对多(个数不同)等情况来针对不同的应用. 1.2数学符号 (1)x(i)<t>前面的i表示第i个训练样本,t表示某个序列样本中索引位置,如下面的一句话是一个样本,“and”的索引是3,序列的长度用Tx表示,下面句…
1.为何选择序列模型? 给出上面一些序列数据的例子,真的很神奇,语音识别.音乐生成.情感分类.DNS序列分析.机器翻译.视频活动检测.命名实体识别. 2.数字符号 对于输入序列x,进行人名识别,输出中进行标识.其中T_x(i)表示第i个序列的长度,此处的例子=9. 如何表示单词,首先是有一个词典,假设为10000长度,那么每一个出现在字典中的单词都可以被表示为10000维的one-hot向量. //但是这也太高维了,肯定有改进办法的. 3.RNN 为什么标准的神经网络不可以? 1.对于序列来说,…
5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.10长短期记忆网络(Long short term memory)LSTM Hochreiter S, Schmidhuber J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8):1735-1780. 门控循环神经网络单元GRU 长短期记忆网络LSTM 记忆细胞更新: \[\breve{C}^{<t>}=tanh(W_c[a^{<t-1&g…
1. Notations 循环序列模型的输入和输出都是时间序列.$x^{(i)<t>}$表示第$i$个输入样本的第$t$个元素,$T_x^{(i)}$表示输入的第$i$个样本的元素个数:$y^{(i)<t>}$表示第$i$个样本的输出的第$t$个元素,$T_y^{(i)}$表示第$i$个样本的输出的元素个数. 在NLP领域,为了描述一句话,会有一个词典(vocabulary),里面保存了所有的英文单词(一般包含3万到5万单词),每个单词依次有一个编号.这样每个单词都可以用一个向量表…
第一周 循环序列模型(Recurrent Neural Networks) 1.1 为什么选择序列模型?(Why Sequence Models?) 1.2 数学符号(Notation) 这个输入数据是 9 个单词组成的序列,所以会有 9 个特征集和来表示这 9 个 单词,并按序列中的位置进行索引,用\(…
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![认真看图][认真看图] [补充说明]深度学习中的序列模型已经广泛应用于自然语言处理(例如机器翻译等).语音识别.序列生成.序列分析等众多领域! [再说一句]本文主要介绍深度学习中序列模型的演变路径,和往常一样,不会详细介绍各算法的具体实现,望理解! 一.循环神经网络RNN 1. RNN标准结构 传统神经网络的前一个输入和后一个输入是完全没有关系的,不能处理序列信息(即前一个输入和后一个输入是…
一.为什么选择序列模型 序列模型可以用于很多领域,如语音识别,撰写文章等等.总之很多优点... 二.数学符号 为了后面方便说明,先将会用到的数学符号进行介绍. 以下图为例,假如我们需要定位一句话中人名出现的位置. 红色框中的为输入.输出值.可以看到人名输出用1表示,反之用0表示: 绿色框中的\(x^{<t>},y^{<t>}\)表示对应红色框中的输入输出值的数学表示,注意从1开始. 灰色框中的\(T_x,T_y\)分别表示输入输出序列的长度,在该例中,\(T_x=9,T_y=9\)…
目录 第一周 循环序列模型 第二周 自然语言处理与词嵌入 第三周 序列模型和注意力机制 第一周 循环序列模型 在进行语音识别时,给定一个输入音频片段X,并要求输出对应的文字记录Y,这个例子中输入和输出数据就是序列模型. 音乐生产问题也是使用序列数据的一个例子. 在自然语言处理中,首先需要决定怎样表示一个序列里单独的单词,解决办法式创建一个词典.然后每个单词的序列表示可以使用该词典长度的一维数组来表示,匹配的位置数据为1,其它位置数据为0. 下面看一个循环神经网络模型: RNN反向传播示意图: 如…
版权声明:本文为博主原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/liuchonge/article/details/70238350 最近忙着实验室的项目,一直没有时间做仿真,所以就先写一下之前看的一篇文章,总结一下吧.这次要说的是Gated CNN,这也是第一次将门限控制引入到CNN中的文章,感觉十分有新意,效果也很棒.下面我们来看一下,文章的主要贡献包括: 提出一种新的门控机制 缓解梯度传播,降低梯度…
作者 | 张皓 引言 RNN是深度学习中用于处理时序数据的关键技术, 目前已在自然语言处理, 语音识别, 视频识别等领域取得重要突破, 然而梯度消失现象制约着RNN的实际应用.LSTM和GRU是两种目前广为使用的RNN变体,它们通过门控机制很大程度上缓解了RNN的梯度消失问题,但是它们的内部结构看上去十分复杂,使得初学者很难理解其中的原理所在.本文介绍”三次简化一张图”的方法,对LSTM和GRU的内部结构进行分析.该方法非常通用,适用于所有门控机制的原理分析. 预备知识: RNN RNN (re…
第三周 序列模型和注意力机制(Sequence models & Attention mechanism) 3.1 序列结构的各种序列(Various sequence to sequence architectures) 首先,我们先建立一个网络,这个网络叫做编码网络(encoder network)(上图编号 1 所示),它是一个 RNN 的结构, RNN 的单元可以是 GRU 也可以是 LSTM.每次只向该网络中输入一个法语单词,将输入序列接收完毕后,这个 RNN 网络会输出一个向量来代表…
5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.5不同类型的循环神经网络 上节中介绍的是 具有相同长度输入序列和输出序列的循环神经网络,但是对于很多应用\(T_{x}和T_{y}\)并不一定相等. 在此节会介绍不同的能够处理不同问题的循环神经网络. 多对多循环神经网络 对于命名实体识别的问题中,RNN的输出和输入序列长度一致--\(T_{x}=T_{y}\). 则在每读一个单词时都输出预测的值\(\hat{y}\) 这是一个典型的多对多的问题. 多对一循环神经网络…
请简述神经网络的发展史sigmoid会饱和,造成梯度消失.于是有了ReLU.ReLU负半轴是死区,造成梯度变0.于是有了LeakyReLU,PReLU.强调梯度和权值分布的稳定性,由此有了ELU,以及较新的SELU.太深了,梯度传不下去,于是有了highway.干脆连highway的参数都不要,直接变残差,于是有了ResNet.强行稳定参数的均值和方差,于是有了BatchNorm.在梯度流中增加噪声,于是有了 Dropout.RNN梯度不稳定,于是加几个通路和门控,于是有了LSTM.LSTM简化…
5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.1基础模型 [1] Sutskever I, Vinyals O, Le Q V. Sequence to Sequence Learning with Neural Networks[J]. 2014, 4:3104-3112. [2] Cho K, Van Merrienboer B, Gulcehre C, et al. Learning Phrase Representations using RNN…
摘自https://www.cnblogs.com/pinard/p/6519110.html 一.RNN回顾 略去上面三层,即o,L,y,则RNN的模型可以简化成如下图的形式: 二.LSTM模型结构: 整体模型: 由于RNN梯度消失的问题,大牛们对于序列索引位置t的隐藏结构做了改进,可以说通过一些技巧让隐藏结构复杂了起来,来避免梯度消失的问题,这样的特殊RNN就是我们的LSTM.由于LSTM有很多的变种,这里我们以最常见的LSTM为例讲述.LSTM的结构如下图: 记忆细胞: 从上图中可以看出,…
1.基础模型 将法语翻译为英语,分为编码和解码阶段,将一个序列变为另一个序列.即序列对序列模型. 从图中识别出物体的状态,将图片转换为文字. 先使用CNN处理图片,再使用RNN将其转换为语言描述. 2.选择最可能的句子 7.注意力模型直观理解 绿色部分是输入法语句子并记忆,在感知机中传递,紫色是解码网络,生成英文翻译: 人翻译的时候会选择看一段翻译一段,而在NN中如果是记忆整个句子,那效果就如Blue得分的蓝线随着单词的增长而降低. 在神经网络中,记忆长句子是很困难的. 使用双向RNN获取特征集…
5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.9语音辨识 Speech recognition 问题描述 对于音频片段(audio clip)x ,y生成文本(transcript),人听见的或者麦克风捕捉的都是空气中细微的气压变化,语音识别系统能够根据这种微弱的气压变化将音频转化为文本字符. 将空气中微弱的气压变化显示成频率图的形式,并输出音频的文本内容如下图所示: 考虑到人的耳朵并不会处理声音的原始波形,而是通过一种特殊的物理结构来测量不同的频率和强…
5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.7注意力模型直观理解Attention model intuition 长序列问题 The problem of long sequences 对于给定的长序列的法语句子,在下图中的网络中,绿色的编码器读取整个句子,然后记忆整个句子,再在感知机中传递,紫色的解码神经网络将生成英文翻译. 人工的方法不会通过读取在记忆整个句子中的内容,然后从零开始翻译成一个英语句子,人工翻译做的是先翻译出句子的部分,再看下一部分…
5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.1什么是序列模型 在进行语音识别时,给定了一个输入音频片段X,并要求输出片段对应的文字记录Y,这个例子中的输入和输出都输序列数据.因为X是一个按时序播放的序列音频而输出Y是一系列单词. 音乐生成使用的也是序列数据,在这个例子中只有输出数据Y是序列,而输入数据可以是空集也可以是个单一的整数,这个数可能指代想要生成的音乐风格也可能是你想要生成的那首曲子的前几个输入. 情感分类问题中,输入是一串文字,输出是情感的评价 DN…
括号序列模型及解法 >Codeforces314E◦给定一个长度为n的仅包含左右括号和问号的字符串,将问号变成左括号或右括号使得该括号序列合法,求方案总数.◦例如(())与()()都是合法的括号序列.◦ n<=3000. >Solution ◦括号序列问题,往往就是把左括号看成+1,右括号看成-1,我们只需要保证任意一个前缀大于等于0,且总和为0,就代表是个合法括号序列了.◦令dp[i][j]表示当前到第i个字符,现在的前缀和◦那么分三种情况考虑.◦若第i+1个字符是左括号,则能转移到d…
吴恩达<深度学习-序列模型>1 --循环序列模型:https://blog.csdn.net/weixin_41043240/article/details/79415134…