分布式唯一ID生成器Twitter】的更多相关文章

分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成. /** * Twitter_Snowflake<br> * SnowFlake的结构如下(每部分用-分开):<br> * 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 -…
0x01 起因 前端时间遇到一个问题,怎么快速生成唯一的id,后来采用了hashid的方法.最近在网上读到了美团关于分布式唯一id生成器的解决方案, 其中提到了三种生成法:(建议看一下这篇文章,写得很详细,分析到位) UUID 数据库生成 类snowflake方案 0x02 问题 文中提到了如下几个问题 1.全局唯一性:不能出现重复的ID号,既然是唯一标识,这是最基本的要求. 2.趋势递增:在MySQL InnoDB引擎中使用的是聚集索引,由于多数RDBMS使用B-tree的数据结构来存储索引数…
UidGenerator是百度开源的Java语言实现,基于Snowflake算法的唯一ID生成器.而且,它非常适合虚拟环境,比如:Docker.另外,它通过消费未来时间克服了雪花算法的并发限制.UidGenerator提前生成ID并缓存在RingBuffer中. 压测结果显示,单个实例的QPS能超过6000,000. 依赖环境: JDK8+ MySQL(用于分配WorkerId) snowflake 由下图可知,雪花算法的几个核心组成部分: 1位sign标识位: 41位时间戳: 10位workI…
本文来自我的github pages博客http://galengao.github.io/ 即www.gaohuirong.cn 摘要: 原文参考运维生存和开源中国上的代码整理 我的环境是python3.5,pip8.2的 一.python版本 前言 由于考虑到以后要动态切分数据,防止将不同表切分数据到同一个表中时出现主键相等的冲突情况,这里我们使用一个全局ID生存器.重要的是他是自增的.这边我使用Snowflake的python实现版(pysnowflake).当然你也可以使用java实现版…
在应用程序中,经常需要全局唯一的ID作为数据库主键.如何生成全局唯一ID? 首先,需要确定全局唯一ID是整型还是字符串?如果是字符串,那么现有的UUID就完全满足需求,不需要额外的工作.缺点是字符串作为ID占用空间大,索引效率比整型低. 如果采用整型作为ID,那么首先排除掉32位int类型,因为范围太小,必须使用64位long型. 采用整型作为ID时,如何生成自增.全局唯一且不重复的ID? 方案一:利用数据库的自增ID,从1开始,基本可以做到连续递增.Oracle可以用SEQUENCE,MySQ…
匠心零度 转载请注明原创出处,谢谢! 缘起 为什么会突然谈到分布式唯一id呢?原因是最近在准备使用RocketMQ,看看官网介绍: 一句话,消息可能会重复,所以消费端需要做幂等.为什么消息会重复后续RocketMQ章节进行详细介绍,本节重点不在这里. 为了达到业务的幂等,必须要有这样一个id存在,需要满足下面几个条件: 同一业务场景要全局唯一. 该id必须是在消息的发送方进行产生发送到MQ. 消费端根据该id进行判断是否重复,确保幂等. 在那里产生,和消费端进行判断等和这个id没有关系,这个id…
1.写唯一ID生成器的原由 在阅读工程源码的时候,发现有一个工具职责生成一个消息ID,方便进行全链路的查询,实现方式特别简单,核心源码不过两行,根据时间戳以及随机数生成一个ID,这种算法ID在分布式系统中重复的风险就很明显了.本来以为只是日志打印功能,根据于此在不同系统调用间关联业务日志而已,不过后来发现此ID需要入库,看到这里就觉得有些风险了,于是就想着怎么改造它. String timeString = String.valueOf(System.currentTimeMillis());…
分布式唯一ID 使用RocketMQ时,需要使用到分布式唯一ID 消息可能会发生重复,所以要在消费端做幂等性,为了达到业务的幂等性,生产者必须要有一个唯一ID, 需要满足以下条件: 同一业务场景要全局唯一 该ID必须是在消息的发送方进行生成发送到MQ 消费端根据该ID进行判断是否重复,确保幂等性 在哪里产生以及消费端进行判断做幂等性与该ID无关,此ID需要保证的特性: 局部甚至全局唯一 趋势递增 Snowflake算法 Snowflake是Twitter开源的分布式ID生成算法, 结果是一个Lo…
分布式唯一ID介绍 分布式系统全局唯一的 id 是所有系统都会遇到的场景,往往会被用在搜索,存储方面,用于作为唯一的标识或者排序,比如全局唯一的订单号,优惠券的券码等,如果出现两个相同的订单号,对于用户无疑将是一个巨大的bug. 在单体的系统中,生成唯一的 id 没有什么挑战,因为只有一台机器一个应用,直接使用单例加上一个原子操作自增即可.而在分布式系统中,不同的应用,不同的机房,不同的机器,要想生成的 ID 都是唯一的,确实需要下点功夫. 一句话总结: 分布式唯一ID是为了给数据进行唯一标识.…
为何需要分布式ID生成器 **本人博客网站 **IT小神 www.itxiaoshen.com **拿我们系统常用Mysql数据库来说,在之前的单体架构基本是单库结构,每个业务表的ID一般从1增,通过 **AUTO_INCREMENT=1设置自增起始值,随着系统(比如互联网电商.外卖)用户数据日渐增长,单库性能无法满足业务系统,在这之后我们会使用基于主从同步的读写分离,但当用户量规模连主从模式都无法应对时,我们会采用分库分表(当然现在还有其他解决方案比如分布式关系型数据库如TiDB)的方案,这样…
方法一: 用数据库的 auto_increment 来生成 优点: 此方法使用数据库原有的功能,所以相对简单 能够保证唯一性 能够保证递增性 id 之间的步长是固定且可自定义的 缺点: 可用性难以保证:数据库常见架构是 一主多从 + 读写分离,生成自增ID是写请求 主库挂了就玩不转了 扩展性差,性能有上限:因为写入是单点,数据库主库的写性能决定ID的生成性能上限,并且 难以扩展 改进方案: 冗余主库,避免写入单点 数据水平切分,保证各主库生成的ID不重复 由1个写库变成3个写库,每个写库设置不同…
项目中需要一个分布式的Id生成器,twitter的Snowflake中这个既简单又高效,网上找的Java版本 package com.cqfc.id; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * tweeter的snowflake 移植到Java: * (a) id构成: 42位的时间前缀 + 10位的节点标识 + 12位的sequence避免并发的数字(12位不够用时强制得到新的时间前缀) * 注意这里进行了小改…
项目是分布式的架构,需要设计一款分布式全局ID,参照了多种方案,博主最后基于snowflake的算法设计了一款自用ID生成器.具有以下优势: 保证分布式场景下生成的ID是全局唯一的 生成的全局ID整体上是呈自增趋势的,也就是说整体是粗略有序的 高性能,能快速产生ID,本机(I7-6400HQ)单线程可以达到每秒生成近40万个ID 只占64bit位空间,可以根据业务需求扩展在前缀或后缀拼接业务标志位转化为字符串. UUID方案 UUID:UUID长度128bit,32个16进制字符,占用存储空间多…
原创 2017-11-21 帝都羊 架构师小秘圈 一,题记 所有的业务系统,都有生成ID的需求,如订单id,商品id,文章ID等.这个ID会是数据库中的唯一主键,在它上面会建立聚集索引! ID生成的核心需求有两点: 全局唯一 趋势有序 二,为什么要全局唯一? 著名的例子就是身份证号码,身份证号码确实是对人唯一的,然而一个人是可以办理多个身份证的,例如你身份证丢了,又重新补办了一张,号码不变. 问题来了,因为系统是按照身份证号码做唯一主键的.此时,如果身份证是被盗的情况下,你是没有办法在系统里面注…
流水号生成器(全局唯一 ID生成器)是服务化系统的基础设施,其在保障系统的正确运行和高可用方面发挥着重要作用.而关于流水号生成算法首屈一指的当属 Snowflake雪花算法,然而 Snowflake本身很难在现实项目中直接使用,因此实际应用时需要一种可落地的方案. Snowflake仓库 https://github.com/twitter/snowflake UidGenerator 由百度用Java语言开发的, 基于 Snowflake算法的唯一ID生成器.UidGenerator以组件形式…
前段时间细节的了解了Jedis的使用,Jedis是redis的java版本的客户端实现.本文做个总结,主要分享如下内容: [pipeline][分布式的id生成器][分布式锁[watch][multi]][redis分布式]好了,一个一个来.一. Pipeline官方的说明是:starts a pipeline,which is a very efficient way to send lots of command and read all the responses when you fin…
  2014-11-08 内容存档在evernote,笔记名"java 实现唯一ID生成器"…
在我们的工作中,数据库某些表的字段会用到唯一的,趋势递增的订单编号,我们将介绍两种方法,一种是传统的采用随机数生成的方式,另外一种是采用当前比较流行的“分布式唯一ID生成算法-雪花算法”来实现. 一.时间戳随机数生成唯一ID 我们写一个for循环,用RandomUtil.generateOrderCode()生成1000个唯一ID,执行结果我们会发现出现重复的ID. /** * 随机数生成util **/ public class RandomUtil { private static fina…
UidGenerator是百度开源的Java语言实现,基于Snowflake算法的唯一ID生成器.而且,它非常适合虚拟环境,比如:Docker.另外,它通过消费未来时间克服了雪花算法的并发限制.UidGenerator提前生成ID并缓存在RingBuffer中. 压测结果显示,单个实例的QPS能超过6000,000. 集成方法: 1.下载 https://github.com/baidu/uid-generator 2.修改一下项目的版本 <dependency> <groupId>…
原文连接: 开源项目|Go 开发的一款分布式唯一 ID 生成系统 今天跟大家介绍一个开源项目:id-maker,主要功能是用来在分布式环境下生成唯一 ID.上周停更了一周,也是用来开发和测试这个项目的相关代码. 美团有一个开源项目叫 Leaf,使用 Java 开发.本项目就是在此思路的基础上,使用 Go 开发实现的. 项目整体代码量并不多,不管是想要在实际生产环境中使用,还是想找个项目练手,我觉得都是一个不错的选择. 项目背景 在大部分系统中,全局唯一 ID 都是一个强需求.比如快递,外卖,电影…
分布式唯一ID,顾名思义,是指在全世界任何一台计算机上都不会重复的唯一Id. 在单机/单服务器/单数据库的小型应用中,不需要用到这类东西.但在高并发.海量数据.大型分布式应用中,这类却是构建整个系统的最核心一环. 设想一下如下场景: 在某个大型电商系统A中,"订单"这类大数据(比如,每天产生1500万条订单)必定不会存储在1台数据库服务器中,而是分布式的存储在多台数据库服务器组成的一个集群中(比如,1000台数据库服务器组成一个集群).由于海量数据+高并发等特性时常会伴随"订…
分布式环境中,如何保证生成的id是唯一不重复的? twitter,开源出了一个snowflake算法,现在很多企业都按照该算法作为参照,实现了自己的一套id生成器. 该算法的主要思路为: 刚好64位的long型数据. 上图中主要由4个部分组成: 第一部分,1位为标识位,不用. 第二部分,41位,用来记录当前时间与标记时间twepoch的毫秒数的差值,41位的时间截,可以使用69年,T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69 第三部分,1…
前言 在互联网的业务系统中,涉及到各种各样的ID,如在支付系统中就会有支付ID.退款ID等.那一般生成ID都有哪些解决方案呢?特别是在复杂的分布式系统业务场景中,我们应该采用哪种适合自己的解决方案是十分重要的.下面我们一一来列举一下,不一定全部适合,这些解决方案仅供你参考,或许对你有用. 正文 分布式ID的特性 唯一性:确保生成的ID是全网唯一的. 有序递增性:确保生成的ID是对于某个用户或者业务是按一定的数字有序递增的. 高可用性:确保任何时候都能正确的生成ID. 带时间:ID里面包含时间,一…
一.前言 分布式系统中我们会对一些数据量大的业务进行分拆,如:用户表,订单表.因为数据量巨大一张表无法承接,就会对其进行分库分表. 但一旦涉及到分库分表,就会引申出分布式系统中唯一主键ID的生成问题,永不迁移数据和避免热点的文章中要求需要唯一ID的特性: 整个系统ID唯一 ID是数字类型,而且是趋势递增的 ID简短,查询效率快 什么是递增?如:第一次生成的ID为12,下一次生成的ID是13,再下一次生成的ID是14.这个就是生成ID递增. 什么是趋势递增?如:在一段时间内,生成的ID是递增的趋势…
介绍 redis是键值对的数据库,常用的五种数据类型为字符串类型(string),散列类型(hash),列表类型(list),集合类型(set),有序集合类型(zset) Redis用作缓存,主要两个用途:高性能,高并发,因为内存天然支持高并发 应用场景 分布式锁(string) setnx key value,当key不存在时,将 key 的值设为 value ,返回1.若给定的 key 已经存在,则setnx不做任何动作,返回0. 当setnx返回1时,表示获取锁,做完操作以后del key…
很多大的互联网公司数据量很大,都采用分库分表,那么分库后就需要统一的唯一ID进行存储.这个ID可以是数字递增的,也可以是UUID类型的. 如果是递增的话,那么拆分了数据库后,可以按照id的hash,均匀的分配到数据库中,并且mysql数据库如果将递增的字段作为主键存储的话会大大提高存储速度.但是如果把订单ID按照数字递增的话,别人能够很容易猜到你有多少订单了,这种情况就可以需要一种非数字递增的方式进行ID的生成. 想到分布式ID的生成,大家可能想到采用Redis进行生成ID,使用Redis的IN…
2.3 基于算法实现 [转载] 这里介绍下Twitter的Snowflake算法——snowflake,它把时间戳,工作机器id,序列号组合在一起,以保证在分布式系统中唯一性和自增性. snowflake生成的ID整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞,在同一毫秒内最多可以生成 1024 X 4096 = 4194304个全局唯一ID. 优点:不依赖数据库,完全内存操作速度快 缺点:不同服务器需要保证系统时钟一致 snowflake的C#版本的简单实现: public cl…
ID生成的核心需求 全局唯一 趋势有序 为什么要全局唯一 避免ID冲突 著名的例子就是身份证号码,身份证号码确实是对人唯一的,然而一个人是可以办理多个身份证的,例如你身份证丢了,又重新补办了一张,号码不变. 问题来了,因为系统是按照身份证号码做唯一主键的.此时,如果身份证是被盗的情况下,你是没有办法在系统里面注销的,因为新旧2个身份证的“主键”都是身份证号码. 也就是说,旧的身份证仍然逍遥在外,完全有效.这个时候,还好有一个身份证有效时间的东西,只有靠身份证有效期来辨识了.不过,这就是现在这么多…
分布式ID的特性 全局唯一 不能出现重复的ID,这是最基本的要求. 递增 有利于关系数据库索引性能. 高可用 既然是服务于分布式系统,为多个服务提供ID服务,访问压力一定很大,所以需要保证高可用. 信息安全 如果ID是有规律的,就容易被恶意操作,在一些场景下需要ID无规则. 生成方案 UUID 核心思想是结合机器的网卡.当地时间.一个随机数来生成. 优点: 性能非常高,本地生成,没有网络消耗. 生成简单,没有高可用风险. 有利于信息安全,因为可读性差,无规律. 缺点: 太长,不易于存储. 有利于…
本人免费整理了Java高级资料,涵盖了Java.Redis.MongoDB.MySQL.Zookeeper.Spring Cloud.Dubbo高并发分布式等教程,一共30G,需要自己领取.传送门:https://mp.weixin.qq.com/s/osB-BOl6W-ZLTSttTkqMPQ 一.前言 分布式系统中我们会对一些数据量大的业务进行分拆,如:用户表,订单表.因为数据量巨大一张表无法承接,就会对其进行分库分表. 但一旦涉及到分库分表,就会引申出分布式系统中唯一主键ID的生成问题,永…