graph Laplacian 拉普拉斯矩阵】的更多相关文章

转自:https://www.kechuang.org/t/84022?page=0&highlight=859356,感谢分享! 在机器学习.多维信号处理等领域,凡涉及到图论的地方,相信小伙伴们总能遇到和拉普拉斯矩阵和其特征值有关的大怪兽.哪怕过了这一关,回想起来也常常一脸懵逼,拉普拉斯矩阵为啥被定义成  ?这玩意为什么冠以拉普拉斯之名?为什么和图论有关的算法如此喜欢用拉普拉斯矩阵和它的特征值? 最近读论文的时候,刚好趁机温习了一下相应的内容,寻本朔源一番,记录下来,希望大家阅读之后,也能够有…
摘自 https://blog.csdn.net/beiyangdashu/article/details/49300479 和 https://en.wikipedia.org/wiki/Laplacian_matrix 定义 给定一个由n个顶点的简单图G,它的拉普拉斯矩阵定义为: L = D - A,其中,D是该图G度的矩阵,A为图G的邻接矩阵. 因为G是一个简单图,A只包含0,1,并且它的对角元素均为0. L中的元素给定为: 其中deg(vi) 表示顶点 i 的度. 对称归一化的拉普拉斯…
Laplacian和PCA貌似是同一种性质的方法,坐标系变换.只是拉普拉斯属于图论的范畴,术语更加专业了. 要看就把一篇文章看完整,再看其中有什么值得借鉴的,总结归纳理解后的东西才是属于你的. 问题: 1. 这篇文章有哪些亮点决定他能发NM?单细胞,consensus,较好的表现,包装了一些专业的术语,显得自己很专业,其实真正做的东西很少: 2. consensus方法的本质是什么? 3. 工具的评估准则?ARI,silhouette index 4. SC3的最大缺点是什么?速度太慢,超过10…
原文地址:https://www.jianshu.com/p/f864bac6cb7a 拉普拉斯矩阵是图论中用到的一种重要矩阵,给定一个有n个顶点的图 G=(V,E),其拉普拉斯矩阵被定义为 L = D-A,D其中为图的度矩阵,A为图的邻接矩阵.例如,给定一个简单的图,如下(例子来自wiki百科):     把此“图”转换为邻接矩阵的形式,记为A:     把W的每一列元素加起来得到N个数,然后把它们放在对角线上(其它地方都是零),组成一个N×N的对角矩阵,记为度矩阵D,如下图所示.其实度矩阵(…
What's up with the Graph Laplacian? 来源 作者:Jeremy Kun blog: Math ∩ Programming 在数学上图和与图关联的某些矩阵的代数性质有很深的联系. 这儿有一个这种现象的最简单的例子.一个无向图\(G=(V,E)\) 并且\(A=(a_{i,j})\)是它的的邻接矩阵.一个显著的事实是矩阵\(A^k\)的(i, j)项就是从i到j的长度为k的路径的数目. 数学中在图的邻接矩阵上做线性代数研究的领域叫做 spectral graph t…
作者:桂. 时间:2017-04-13  07:43:03 链接:http://www.cnblogs.com/xingshansi/p/6702188.html 声明:欢迎被转载,不过记得注明出处哦~ 前言 前面分析了非负矩阵分解(NMF)的应用,总觉得NMF与谱聚类(Spectral clustering)的思想很相似,打算分析对比一下.谱聚类更像是基于图(Graph)的思想,其中涉及到一个重要概念就是拉普拉斯矩阵(Laplace matrix),想着先梳理一下这个矩阵: 1)拉普拉斯矩阵基…
谱聚类步骤 第一步:数据准备,生成图的邻接矩阵: 第二步:归一化普拉斯矩阵: 第三步:生成最小的k个特征值和对应的特征向量: 第四步:将特征向量kmeans聚类(少量的特征向量):…
Laplacian 算子简介 求多元函数的二阶导数的映射又称为 Laplacian 算子:   计算拉普拉斯变换:Laplacian 函数 void Laplacian(InputArray src, OutputArray dst, int ddepth, int ksize = 1, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT); src,输入图像,填 Mat 类型即可,但需为单通道 8 位图像. d…
[题目链接] http://bestcoder.hdu.edu.cn/contests/contest_showproblem.php?cid=663&pid=1002 [题意] 给定一个有向图,若干个询问,问从u走k步到达各个顶点的概率. 其中除法化为乘逆元. [思路] 设f[i][j]表示到达i点走了j步的概率,则有转移式: f[i][j]=sigma{ f[pre(i)][j-1]/out[pre(i)] } 其中pre为有向图上的前一个节点,out[u]为u的出度大小. 构造矩阵后使用矩…
1 介绍 拉普拉斯特征映射(Laplacian Eigenmaps)是一种不太常见的降维算法,它看问题的角度和常见的降维算法不太相同,是从局部的角度去构建数据之间的关系.也许这样讲有些抽象,具体来讲,拉普拉斯特征映射是一种基于图的降维算法,它希望相互间有关系的点(在图中相连的点)在降维后的空间中尽可能的靠近,从而在降维后仍能保持原有的数据结构. 2 推导 拉普拉斯特征映射通过构建邻接矩阵为 $W$ (邻接矩阵定义见这里) 的图来重构数据流形的局部结构特征.其主要思想是,如果两个数据 实例 $i$…