原文题目: 118. Pascal's Triangle 119. Pascal's Triangle II 读题: 杨辉三角问题 '''118''' class Solution(object): def generate(self, numRows): """ :type numRows: int :rtype: List[List[int]] """ if not numRows: return [] result = [] for i i…
118 - Pascal's Triangle Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,Return [ [1], [1,1], [1,2,1], [1,3,3,1], [1,4,6,4,1] ] Solution: class Solution { public: vector<vector<int>> generate(int n…
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3,3,1]. Note:Could you optimize your algorithm to use only O(k) extra space? [思路] 我们为了满足空间复杂度的要求,我们新建两个ArrayList,一个负责存储上一个Pascal行的结果,一个根据上一个Pascal行得出当前P…
Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5, Return [ [1], [1,1], [1,2,1], [1,3,3,1], [1,4,6,4,1] ] 解决方案: vector<vector<int>> generate(int numRows) { vector<vector<int>> res = {};…
Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle. Note that the row index starts from 0. Example: Input: 3 Output: [1,3,3,1] 原题地址:Pascal's Triangle II 题意: 杨辉三角 代码: class Solution(object): def getRow(self,…
Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5, Return [ [1], [1,1], [1,2,1], [1,3,3,1], [1,4,6,4,1] ] 解决方案: vector<vector<int>> generate(int numRows) { vector<vector<int>> res = {};…
118. Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,Return [ [1], [1,1], [1,2,1], [1,3,3,1], [1,4,6,4,1] ] class Solution { public: vector<vector<int>> generate(int numRows) { vector<vector<…
题目来源 https://leetcode.com/problems/pascals-triangle-ii/ Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3,3,1]. 题意分析 Input:integer Output:kth row of the Pascal's triangle Conditions:只返回第n行 题目思路 同118,不…
一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3, Return [1,3,3,1]. Note: Could you optimize your algorithm to use onl…