tf.estimator】的更多相关文章

前言 本文接着上一篇继续来聊Tensorflow的接口,上一篇中用较低层的接口实现了线性模型,本篇中将用更高级的API--tf.estimator来改写线性模型. 还记得之前的文章<机器学习笔记2 - sklearn之iris数据集>吗?本文也将使用tf.estimator改造该示例. 本文代码都是基于API版本r1.4.本文中本地开发环境为Pycharm,在文中不再赘述. tf.estimator 内置模型 比起用底层API"较硬"的编码方式,tf.estimator的在…
import tensorflow 报错: tf.estimator package not installed. 解决方案1: 安装 pip install tensorflow-estimator==1.10.12 解决方案2: downgrade pandas from 0.23.4 to 0.23.0 upgrade matplotlib to 3.0.0…
官网链接:https://www.tensorflow.org/api_docs/python/tf/estimator/Estimator Estimator - 一种可极大地简化机器学习编程的高阶 TensorFlow API.Estimator 会封装下列操作: 训练 评估 预测 导出以供使用 您可以使用官方提供的预创建的 Estimator,也可以编写自定义 Estimator.所有 Estimator(无论是预创建的还是自定义)都是基于 tf.estimator.Estimator 类…
1.定义 tf.estimator.Estimator(model_fn=model_fn) #model_fn是一个方法 2.定义model_fn: def model_fn_builder(self, bert_config, num_labels, init_checkpoint): """ :param bert_config: :param num_labels: :param init_checkpoint: :param learning_rate: :para…
报错:class BeholderHook(tf.estimator.SessionRunHook):AttributeError: module 'tensorflow.python.estimator.estimator_lib' has no attribute 'SessionRunHook' 检查tensorboard的安装情况:pip3 list 发现tensorboard与tensorflow的版本不一致:卸载 pip3 uninstall tensorboard:重新安装 pip…
estimator同keras是tensorflow的高级API.在tensorflow1.13以上,estimator已经作为一个单独的package从tensorflow分离出来了.estimator抽象了tensorflow底层的api, 同keras一样,他分离了model和data, 不同于keras这个不得不认养的儿子,estimator作为tensorflow的亲儿子,天生具有分布式的基因,更容易在生产环境里面使用 tensorflow官方文档提供了比较详细的estimator程序…
TensorFlow的高级机器学习API(tf.estimator)可以轻松配置,训练和评估各种机器学习模型. 在本教程中,您将使用tf.estimator构建一个神经网络分类器,并在Iris数据集上对其进行训练,以基于萼片/花瓣几何学来预测花朵种类. 您将编写代码来执行以下五个步骤: 将包含Iris训练/测试数据的CSV加载到TensorFlow数据集中 构建一个神经网络分类器 使用训练数据训练模型 评估模型的准确性 分类新样品 注:在开始本教程之前,请记住在您的机器上安装TensorFlow…
https://www.tensorflow.org/guide/custom_estimators?hl=zh-cn 创建自定义 Estimator 本文档介绍了自定义 Estimator.具体而言,本文档介绍了如何创建自定义 Estimator 来模拟预创建的 Estimator DNNClassifier 在解决鸢尾花问题时的行为.要详细了解鸢尾花问题,请参阅预创建的 Estimator 这一章. 要下载和访问示例代码,请执行以下两个命令: git clone https://github…
TensorFlow 高级接口使用简介(estimator, keras, data, experiment) TensorFlow 1.4正式添加了keras和data作为其核心代码(从contrib中毕业),加上之前的estimator API,现在已经可以利用Tensorflow像keras一样方便的搭建网络进行训练.data可以方便从多种来源的数据输入到搭建的网络中(利用tf.features可以方便的对结构化的数据进行读取和处理,比如存在csv中的数据,具体操作可以参考这篇文档):ke…
Tensorflow 1.4中,Keras作为作为核心模块可以直接通过tf.keas进行调用,但是考虑到keras对tfrecords文件进行操作比较麻烦,而将keras模型转成tensorflow中的另一个高级API -- Estimator模型,然后就可以调用Dataset API进行对tfrecords进行操作用来训练/评估模型.而keras本身也用到了Estimator API并且提供了tf.keras.estimator.model_to_estimator函数将keras模型可以很方…