使用FFT进行频谱分析】的更多相关文章

下面的示例说明了如何使用 FFT 函数进行频谱分析.FFT 的一个常用场景是确定一个时域噪声信号的频率分量. 首先创建一些数据.假设是以 1000 Hz 的频率对数据进行的采样.首先为数据构造一条时间轴,时间范围从 t = 0 至 t = 0.25,步长为 1 毫秒.然后,创建一个包含 50 Hz 和 120 Hz 频率的正弦波信号 x. t = 0:.001:.25; x = sin(2*pi*50*t) + sin(2*pi*120*t); 添加一些标准差为 2 的随机噪声以产生噪声信号 y…
import numpy as np import matplotlib.pyplot as plt from scipy.fftpack import fft fs=100 #采样频率 N=128 #数据点数 n=np.arange(0,N) t=n/fs #时间序列 pi=3.14 x=0.5*np.sin(2*pi*15*t)+2*np.sin(2*pi*40*t) y=np.abs(fft(x)) #fft变换后的振幅 f=n*fs/N #频率序列 print(t.shape) plt.…
from http://blog.csdn.net/u012129372/article/details/26565611 %FFT变换,获得采样数据基本信息,时域图,频域图 %这里的向量都用行向量,假设被测变量是速度,单位为m/s clear; close all; load data.txt              %通过仪器测量的原始数据,存储为data.txt中,附件中有一个模版(该信号极不规则) A=data;                                    …
1.首先学习下傅里叶变换的东西.学高数的时候老师只是将傅里叶变换简单的说了下,并没有深入的讲解.而现在看来,傅里叶变换似乎是信号处理的方面的重点只是呢,现在就先学习学习傅里叶变换吧. 上面这幅图在知乎一个很著名的关于傅里叶变换的文章中的核心插图,我觉得这幅图很直观的就说明了傅里叶变换的实质.时域上的东西直观的反应到了频域上了,很完美的结合到了一起,233333.  无数正弦波叠加,震荡的叠加的最后结果竟然是方波,同理,任何周期性函数竟然都能拆分为傅里叶级数的形式,这样的简介与优雅,真令人折服.…
MATLAB中FFT的使用方法 说明:以下资源来源于<数字信号处理的MATLAB实现>万永革主编 一.调用方法X=FFT(x):X=FFT(x,N):x=IFFT(X);x=IFFT(X,N) 用MATLAB进行谱分析时注意: (1)函数FFT返回值的数据结构具有对称性. 例:N=8;n=0:N-1;xn=[4 3 2 6 7 8 9 0];Xk=fft(xn) →Xk = 39.0000           -10.7782 + 6.2929i        0 - 5.0000i   4.…
FFT(Fast Fourier Transformation),即为快速傅氏变换,是离散傅氏变换(DFT)的快速算法. 采样得到的数字信号,做FFT变换,N个采样点,经过FFT之后,就可以得到N个点的FFT结果.为了方便进行FFT运算,通常N取2的整数次方. 假设信号: S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180) 它含有:2V的直流分量 频率为50Hz.相位为-30度.幅度为3V的交流信号 频率为75Hz.相位为90度…
FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域.有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了.这就是很多信号分析采用FFT变换的原因.另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的. 虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思.如何决定要使用多少点来做FFT. 现在圈圈就根据实际经验来说说FFT结果的具体物理意义.一个模拟信号,经过ADC采样之后,就变成了数字信号.采样定理告…
来源:学步园 FFT(Fast Fourier Transform,快速傅立叶变换)是离散傅立叶变换的快速算法,也是我们在数字信号处理技术中经常会提到的一个概念.在大学的理工科课程中,在完成高等数学的课程后,数字信号处理一般会作为通信电子类专业的专业基础课程进行学习,原因是其中涉及了大量的高等数学的理论推导,同时又是各类应用技术的理论基础. 关于傅立叶变换的经典著作和文章非常多,但是看到满篇的复杂公式推导和罗列,我们还是很难从直观上去理解这一复杂的概念,我想对于普通的测试工程师来说,掌握FFT的…
图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度.如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低:而对 于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高.傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱.从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的.从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域.换句话说,…
DCT变换的原理及算法 文库介绍 对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. 学习过<高等数学>和<信号与系统>这两门课的朋友,都知道时域上任意连续的周期信号可以分解为无限多个正弦信号之和,在频域上就表示为离散非周期的信号,即时域连续周期对应频域离散非周期的特点,这就是傅里叶级数展开(FS),它用于分析连续周期信号. FT是傅里叶变换,它主要用于分析连续非周期信号,由于信号是非周期的,它必包含了各种频率的信号,…