TensorFlow v2.0实现逻辑斯谛回归】的更多相关文章

使用TensorFlow v2.0实现逻辑斯谛回归 此示例使用简单方法来更好地理解训练过程背后的所有机制 MNIST数据集概览 此示例使用MNIST手写数字.该数据集包含60,000个用于训练的样本和10,000个用于测试的样本.这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28x28像素),其值为0到255. 在此示例中,每个图像将转换为float32,归一化为[0,1],并展平为784个特征(28 * 28)的1维数组. from __future__ import absolut…
使用TensorFlow v2.0构建一个两层隐藏层完全连接的神经网络(多层感知器). 这个例子使用低级方法来更好地理解构建神经网络和训练过程背后的所有机制. 神经网络概述 MNIST 数据集概述 此示例使用手写数字的MNIST数据集.该数据集包含60,000个用于训练的示例和10,000个用于测试的示例.这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28x28像素),值为0到255. 在此示例中,每个图像将转换为float32并归一化为[0,1],并展平为784个特征的一维数组(28…
使用TensorFlow v2.0构建卷积神经网络. 这个例子使用低级方法来更好地理解构建卷积神经网络和训练过程背后的所有机制. CNN 概述 MNIST 数据集概述 此示例使用手写数字的MNIST数据集.该数据集包含60,000个用于训练的示例和10,000个用于测试的示例.这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28x28像素),值为0到255. 在此示例中,每个图像将转换为float32并归一化为[0,1]. 更多信息请查看链接: http://yann.lecun.com…
使用TensorFlow v2.0实现Word2Vec算法计算单词的向量表示,这个例子是使用一小部分维基百科文章来训练的. 更多信息请查看论文: Mikolov, Tomas et al. "Efficient Estimation of Word Representations in Vector Space.", 20131 from __future__ import division, print_function, absolute_import import collect…
使用TensorFlow v2.0的基本张量操作 from __future__ import print_function import tensorflow as tf # 定义张量常量 a = tf.constant(2) b = tf.constant(3) c = tf.constant(5) # 各种张量操作 # 注意:张量也支持python的操作( ,*,...) add = tf.add(a,b) sub = tf.subtract(a,b) mul = tf.multiply(…
背景 Anaconda切换各种环境非常方便,现在我们就来介绍一下如何使用anaconda安装tensorflow环境. anaconda v3.5 from 清华镜像站 tensorflow v2.0 步骤 创建新的环境 启动Anaconda Navigator,点击Enviorments,点击Create: 输入自定义环境的名字(例如tensorflow),根据自己的喜好指定python( Tensorflow1.13.1版本以及后续版本支持Python3.7) 右上方搜索tensorflow…
安装 TensorFlow 2.0 Alpha 本文仅仅介绍 Windows 的安装方式: pip install tensorflow==2.0.0-alpha0 # cpu 版本 pip install tensorflow==2.0.0-alpha0 # gpu 版本 针对 GPU 版的安装完毕后还需要设置环境变量: SET PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin;%PATH% SET PATH=C…
Effective TensorFlow 2.0 为使TensorFLow用户更高效,TensorFlow 2.0中进行了多出更改.TensorFlow 2.0删除了篇冗余API,使API更加一致(统一RNNs, 统一优化器),并通过Eager execution更好地与Python集成. 许多RFCs已经解释了TensorFlow 2.0带来的变化.本指南介绍了TensorFlow 2.0应该怎么进行开发.这假设您已对TensorFlow 1.x有一定了解. A brief summary o…
前文:三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署 TensorFlow 模型导出 使用 SavedModel 完整导出模型 不仅包含参数的权值,还包含计算的流程(即计算图) tf.saved_model.save(model, "保存的目标文件夹名称") 将模型导出为 SavedModel model = tf.saved_model.load("保存的目标文件夹名称") 载入 SavedModel 文件 因为 SavedModel…
使用TensorFlow v2库实现线性回归 此示例使用简单方法来更好地理解训练过程背后的所有机制 from __future__ import absolute_import, division, print_function import tensorflow as tf import numpy as np rng = np.random # 参数 learning_rate = 0.01 training_steps = 1000 display_step = 50 # 训练数据 X =…