首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
μVulDeePecker实现
2024-08-09
VulDeePecker:基于深度学习的脆弱性检测系统
最近的两款软件,VUDDY和VulPecker,假阴性率高而假阳性率低,用于检测由代码克隆引发的漏洞.而如果用于非代码克隆引起的漏洞则会出现高误报率. 本文使用深度学习处理程序中的代码片段,不应由专家来手动定义特征,在不产生高假阴性率,假阳性率适当,能够判断是否有漏洞,并定位漏洞位置 VulDeePecker的效果:能够同时检测不止一种漏洞,可以结合人类知识进一步提高有效性(不是定义特征). 这一项目采用了由国家标准和技术研究所 (NIST) 和软件保证参考数据集 (SARD) 放出的数据集.
A Deep Learning-Based System for Vulnerability Detection(二)
接着上一篇,这篇研究实验和结果. A.用于评估漏洞检测系统的指标 TP:为正确检测到漏洞的样本数量 FP:为检测到虚假漏洞样本的数量(误报) FN:为未检真实漏洞的样本数量(漏报) TN:未检测到漏洞样本的数量 这篇文献广泛使用指标假阳性率(FPR),假阴性率(FNR),真阳性率或者召回率(TPR),精确度(P)和F1-measure来评估漏洞检测系统[39]. FPR=FP/(FP+TN)指标衡量的是假阳性率漏洞占不容易受到攻击的整个群体样本的比例(在非脆弱样本中误报比率): FNR=FN/(
A Deep Learning-Based System for Vulnerability Detection
本篇文献作者提出了一种基于深度学习来检测软件漏洞的方案. 摘要:作者开始基于深度学习的漏洞检测研究,是为了减轻专家手工定义特性的繁琐任务,需要制定一些指导性原则来适用于深度学习去进行漏洞探测.出于这个目的,作者用代码 gadgets 来代表程序,然后把它们转化为向量,其中代码gadget是一些彼此语义相关的代码行.基于这设计了评估系统VulDeePecker,作者为深度学习方法提供了最初始的漏洞数据集,实验结果表明:与其他方法相比,系统能够实现更少的误报,将系统用于Xen,Seamo
热门专题
docker 容器内ping不通外面
tzselect 那个时区是零时区
idea js 调试 变量值
c# post 请求超时
linux中的ALSA
使用shiro拦截器后出现跨域问题
Propagation.REQUIRES_NEW不生效
visual studio 6.0英文版
nginx修改配置文件不生效
fileoutputstream写double
jmeter使用AES解密算法
采用顺序栈实现检验表达式括号匹配
jsMind 重新加载数据
megaraid硬盘强制上线
Advanced Installer部署.net core
zabbix怎么实现批量监测端口并且实时报警的
shell 引用 java环境变量
ffmpeg推流rtmp命令 循环 mp4
input 判断数字
导出提示ora00904