首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
主题模型perplexity
2024-09-02
LDA主题模型评估方法–Perplexity
在LDA主题模型之后,需要对模型的好坏进行评估,以此依据,判断改进的参数或者算法的建模能力. Blei先生在论文<Latent Dirichlet Allocation>实验中用的是Perplexity值作为评判标准. 一.Perplexity定义 源于wiki:http://en.wikipedia.org/wiki/Perplexity perplexity是一种信息理论的测量方法,b的perplexity值定义为基于b的熵的能量(b可以是一个概率分布,或者概率模型),通常用于概率模型的比
R语言︱LDA主题模型——最优主题数选取(topicmodels)+LDAvis可视化(lda+LDAvis)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:在自己学LDA主题模型时候,发现该模型有这么几个未解决的问题: 1.LDA主题数量,多少个才是最优的. 2.作出主题之后,主题-主题,主题与词语之间关联如何衡量. 于是在查阅几位老师做的成果之后,将他们的成果撮合在一起.笔者发现R里面目前有两个包可以做LDA模型,是lda包+topicmodels包,两个包在使用的过程中,需要整理的数
主题模型︱几款新主题模型——SentenceLDA、CopulaLDA、TWE简析与实现
百度最近开源了一个新的关于主题模型的项目.文档主题推断工具.语义匹配计算工具以及基于工业级语料训练的三种主题模型:Latent Dirichlet Allocation(LDA).SentenceLDA 和Topical Word Embedding(TWE). . 一.Familia简介 帮Familia,打个小广告~ Familia的github 主题模型在工业界的应用范式可以抽象为两大类: 语义表示和语义匹配. 语义表示 (Semantic Representation) 对文档进行主题降
机器学习-LDA主题模型笔记
LDA常见的应用方向: 信息提取和搜索(语义分析):文档分类/聚类.文章摘要.社区挖掘:基于内容的图像聚类.目标识别(以及其他计算机视觉应用):生物信息数据的应用; 对于朴素贝叶斯模型来说,可以胜任许多文本分类问题,但无法解决语料中一词多义和多词一义的问题--它更像是词法分析,而非语义分析.如果使用词向量作为文档的特征,一词多义和多词一义会造成计算文档间相似度的不准确性.LDA模型通过增加“主题”的方式,一定程度的解决上述问题: 一个词可能被映射到多个主题中,即,一词多义.多个词可能被映射到某个
自然语言处理基础与实战(8)- 主题模型LDA理解与应用
本文主要用于理解主题模型LDA(Latent Dirichlet Allocation)其背后的数学原理及其推导过程.本菇力求用简单的推理来论证LDA背后复杂的数学知识,苦于自身数学基础不够,因此文中还是大量引用了各方大神的数学推导细节,既是为了方便自己以后回顾,也方便读者追本溯源,当然喜欢直接看应用的读者可直接翻到第二章~ 基本目录如下: LDA的原理1.1 先导数学知识准备1.2 文本模型 - Unigram Model1.3 主题模型 - PLSA Model1.4 主题模型 - LDA
LDA( Latent Dirichlet Allocation)主题模型 学习报告
1 问题描述 LDA由Blei, David M..Ng, Andrew Y..Jordan于2003年提出,是一种主题模型,它可以将文档集中每篇文档的主题以概率分布的形式给出,从而通过分析一些文档抽取出它们的主题(分布)出来后,便可以根据主题(分布)进行主题聚类或文本分类.此外,一篇文档可以包含多个主题,文档中每一个词都由其中的一个主题生成. 人类是怎么生成文档的呢?LDA的这三位作者在原始论文中给了一个简单的例子.比如假设事先给定了这几个主题:Arts.Budgets.Childre
Gensim LDA主题模型实验
本文利用gensim进行LDA主题模型实验,第一部分是基于前文的wiki语料,第二部分是基于Sogou新闻语料. 1. 基于wiki语料的LDA实验 上一文得到了wiki纯文本已分词语料 wiki.zh.seg.utf.txt,去停止词后可进行LDA实验. import codecs from gensim.models import LdaModel from gensim.corpora import Dictionary train = [] stopwords = codecs.open
[综] Latent Dirichlet Allocation(LDA)主题模型算法
多项分布 http://szjc.math168.com/book/ebookdetail.aspx?cateid=1&§ionid=983 二项分布和多项分布 http://blog.csdn.net/shuimu12345678/article/details/30773929 0-1分布: 在一次试验中,要么为0要么为1的分布,叫0-1分布. 二项分布: 做n次伯努利实验,每次实验为1的概率为p,实验为0的概率为1-p;有k次为1,n-k次为0的概率,就是二项分布B(n,p,
Latent Dirichlet Allocation 文本分类主题模型
文本提取特征常用的模型有:1.Bag-of-words:最原始的特征集,一个单词/分词就是一个特征.往往一个数据集就会有上万个特征:有一些简单的指标可以帮助筛选掉一些对分类没帮助的词语,例如去停词,计算互信息熵等等,但不管怎么训练,特征维度都很大,每个特征的信息量太小:2.统计特征:包括Term frequency(TF) , Inverse document frequency(IDF), 以及合并起来的TF-IDF.这种语言模型主要是用词汇的统计特征来作为特征集,每个特征都能够说得出物理意义
主题模型-LDA浅析
(一)LDA作用 传统判断两个文档相似性的方法是通过查看两个文档共同出现的单词的多少,如TF-IDF等,这种方法没有考虑到文字背后的语义关联,可能在两个文档共同出现的单词很少甚至没有,但两个文档是相似的. 举个例子,有两个句子分别如下: “乔布斯离我们而去了.” “苹果价格会不会降?” 可以看到上面这两个句子没有共同出现的单词,但这两个句子是相似的,如果按传统的方法判断这两个句子肯定不相似,所以在判断文档相关性的时候需要考虑到文档的语义,而语义挖掘的利器是主题模型,LDA就是其中一种比较有效的模
文本主题模型之LDA(二) LDA求解之Gibbs采样算法
文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法(TODO) 本文是LDA主题模型的第二篇,读这一篇之前建议先读文本主题模型之LDA(一) LDA基础,同时由于使用了基于MCMC的Gibbs采样算法,如果你对MCMC和Gibbs采样不熟悉,建议阅读之前写的MCMC系列MCMC(四)Gibbs采样. 1. Gibbs采样算法求解LDA的思路 首先,回顾LDA的模型图如下: 在Gibbs采样算
文本主题模型之LDA(一) LDA基础
文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法(TODO) 在前面我们讲到了基于矩阵分解的LSI和NMF主题模型,这里我们开始讨论被广泛使用的主题模型:隐含狄利克雷分布(Latent Dirichlet Allocation,以下简称LDA).注意机器学习还有一个LDA,即线性判别分析,主要是用于降维和分类的,如果大家需要了解这个LDA的信息,参看之前写的线性判别分析LDA原理总结.文本
文本主题模型之LDA(三) LDA求解之变分推断EM算法
文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法 本文是LDA主题模型的第三篇,读这一篇之前建议先读文本主题模型之LDA(一) LDA基础,同时由于使用了EM算法,如果你对EM算法不熟悉,建议先熟悉EM算法的主要思想.LDA的变分推断EM算法求解,应用于Spark MLlib和Scikit-learn的LDA算法实现,因此值得好好理解. 1. 变分推断EM算法求解LDA的思路 首先,回顾L
用scikit-learn学习LDA主题模型
在LDA模型原理篇我们总结了LDA主题模型的原理,这里我们就从应用的角度来使用scikit-learn来学习LDA主题模型.除了scikit-learn, 还有spark MLlib和gensim库也有LDA主题模型的类库,使用的原理基本类似,本文关注于scikit-learn中LDA主题模型的使用. 1. scikit-learn LDA主题模型概述 在scikit-learn中,LDA主题模型的类在sklearn.decomposition.LatentDirichletAllocatio
主题模型(概率潜语义分析PLSA、隐含狄利克雷分布LDA)
一.pLSA模型 1.朴素贝叶斯的分析 (1)可以胜任许多文本分类问题.(2)无法解决语料中一词多义和多词一义的问题--它更像是词法分析,而非语义分析.(3)如果使用词向量作为文档的特征,一词多义和多词一义会造成计算文档间相似度的不准确性.(4)可以通过增加"主题"的方式,一定程度的解决上述问题:一个词可能被映射到多个主题中(一词多义),多个词可能被映射到某个主题的概率很高(多词一义) 2.pLSA模型 基于概率统计的pLSA模型(probabilistic latentsemanti
NLP︱LDA主题模型的应用难题、使用心得及从多元统计角度剖析
将LDA跟多元统计分析结合起来看,那么LDA中的主题就像词主成分,其把主成分-样本之间的关系说清楚了.多元学的时候聚类分为Q型聚类.R型聚类以及主成分分析.R型聚类.主成分分析针对变量,Q型聚类针对样本. PCA主要将的是主成分-变量之间的关系,在文本中LDA也有同样的效果,将一撮词(变量)变成话题(主成分),同时通过画像主成分,可以知道人群喜欢什么样子的话题: Q型聚类代表样本之间的群落关系. LDA假设前提:主题模型中最主要的假设是词袋假设(bag of words),指通过交换文档内词的次
Spark:聚类算法之LDA主题模型算法
http://blog.csdn.net/pipisorry/article/details/52912179 Spark上实现LDA原理 LDA主题模型算法 [主题模型TopicModel:隐含狄利克雷分布LDA] Spark实现LDA的GraphX基础 在Spark 1.3中,MLlib现在支持最成功的主题模型之一,隐含狄利克雷分布(LDA).LDA也是基于GraphX上构建的第一个MLlib算法,GraphX是实现它最自然的方式. 有许多算法可以训练一个LDA模型.我们选择EM算法,因为它
LDA主题模型
(一)LDA作用 传统判断两个文档相似性的方法是通过查看两个文档共同出现的单词的多少,如TF-IDF等,这种方法没有考虑到文字背后的语义关联,可能在两个文档共同出现的单词很少甚至没有,但两个文档是相似的. 举个例子,有两个句子分别如下: "乔布斯离我们而去了." "苹果价格会不会降?" 可以看到上面这两个句子没有共同出现的单词,但这两个句子是相似的,如果按传统的方法判断这两个句子肯定不相似,所以在判断文档相关性的时候需要考虑到文档的语义,而语义挖掘的利器是主题模型,
R语言︱LDA主题模型——最优主题...
R语言︱LDA主题模型——最优主题...:https://blog.csdn.net/sinat_26917383/article/details/51547298#comments
文本主题模型之非负矩阵分解(NMF)
在文本主题模型之潜在语义索引(LSI)中,我们讲到LSI主题模型使用了奇异值分解,面临着高维度计算量太大的问题.这里我们就介绍另一种基于矩阵分解的主题模型:非负矩阵分解(NMF),它同样使用了矩阵分解,但是计算量和处理速度则比LSI快,它是怎么做到的呢? 1. 非负矩阵分解(NMF)概述 非负矩阵分解(non-negative matrix factorization,以下简称NMF)是一种非常常用的矩阵分解方法,它可以适用于很多领域,比如图像特征识别,语音识别等,这里我们会主要关注于它在文本主
热门专题
skiplistmap 和 hashmap
sql 格式化字符串 补0
mysql sqlserver 数据类型比较
centos 启动 故障 db saved on
springboot @GetMapping 传递对象
html prompt数字
lua中定义方法调用
8点基2fft算法流程图
Ethernet type 完整定义
nginx转发至网关
use the -u option 命令行
linux 文件恢复工具集
Windows 11 上安装iis baocuo
tomcat 启动 慢
css li 居中且换行
stm32的vref使用3.3 tl431
python爬出具有敏感词的文件
pymysql 批量更新操作效率
windows bat 删除单个文件
fabric 1.4 链码打包