首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
令牌桶设置为10 代表 QPS最大是10吗
2024-10-24
RateLimiter令牌桶算法
限流,是服务或者应用对自身保护的一种手段,通过限制或者拒绝调用方的流量,来保证自身的负载. 常用的限流算法有两种:漏桶算法和令牌桶算法 漏桶算法 思路很简单,水(请求)先进入到漏桶里,漏桶以一定的速度出水,当水流入速度过大会直接溢出,可以看出漏桶算法能强行限制数据的传输速率. 对于很多应用场景来说,除了要求能够限制数据的平均传输速率外,还要求允许某种程度的突发传输.这时候漏桶算法可能就不合适了,令牌桶算法更为适合. 令牌桶算法 原理是系统会以一个恒定的速度往桶里放入令牌,而如果请求需要被处理,则
限流10万QPS、跨域、过滤器、令牌桶算法-网关Gateway内容都在这儿
一.微服务网关Spring Cloud Gateway 1.1 导引 文中内容包含:微服务网关限流10万QPS.跨域.过滤器.令牌桶算法. 在构建微服务系统中,必不可少的技术就是网关了,从早期的Zuul,到现在的Spring Cloud Gateway,网关我们用的不可少. 今天我就将沉淀下来的所有与网关相关的知识,用一篇文章总结清楚,希望对爱学习的小伙伴们有所帮助. 本篇文章主要介绍网关跨域配置,网关过滤器编写,网关的令牌桶算法限流[每秒10万QPS] 首先我们来看什么是网关 1.2 什么是微
限流之令牌桶算法——RateLimiter官方文档
原文链接 作者:Dimitris Andreou 译者:魏嘉鹏 校对:方腾飞 RateLimiter 从概念上来讲,速率限制器会在可配置的速率下分配许可证.如果必要的话,每个acquire() 会阻塞当前线程直到许可证可用后获取该许可证.一旦获取到许可证,不需要再释放许可证. 校对注:RateLimiter使用的是一种叫令牌桶的流控算法,RateLimiter会按照一定的频率往桶里扔令牌,线程拿到令牌才能执行,比如你希望自己的应用程序QPS不要超过1000,那么RateLimiter设置100
Guava-RateLimiter实现令牌桶控制接口限流方案
一.前言 对于一个应用系统来说,我们有时会遇到极限并发的情况,即有一个TPS/QPS阀值,如果超了阀值可能会导致服务器崩溃宕机,因此我们最好进行过载保护,防止大量请求涌入击垮系统.对服务接口进行限流可以达到保护系统的效果,一旦达到限制速率则可以拒绝服务.排队或等待.降级等处理. 二.常见限流方案 1.计数器法 原理:在单位时间段内,对请求数进行计数,如果数量超过了单位时间的限制,则执行限流策略,当单位时间结束后,计数器清零,这个过程周而复始,就是计数器法. 缺点:不能均衡限流,在一个单位时间的末
go的令牌桶实现库 go-rate
关于我 我的博客|文章首发 go-rate是速率限制器库,基于 Token Bucket(令牌桶)算法实现. go-rate被用在LangTrend的生产中 用于遵守GitHub API速率限制. 速率限制可以完成一些特殊的功能需求,包括但不限于服务器端垃圾邮件保护.防止api调用饱和等. 库使用说明 构造限流器 我们首先构造一个限流器对象: limiter := NewLimiter(10, 1); 这里有两个参数: 第一个参数是 r Limit.代表每秒可以向 Token 桶中产生多少 to
二.Go微服务--令牌桶
1. 令牌桶 1.1 原理 我们以 r/s 的速度向桶内放置令牌,桶的容量为 b , 如果桶满了令牌将会丢弃 当请求到达时,我们向桶内获取令牌,如果令牌足够,我们就通过转发请求 如果桶内的令牌数量不够,那么这个请求会被缓存等待令牌足够时转发,或者是被直接丢弃掉 由于桶的存在,所以令牌桶算法不仅可以限流还可以应对突发流量的情况 举个例子:假设我们桶的容量是 100,速度是 10 rps,那么在我们桶满的情况下,如果突然来 100 个请求是可以满足的,但是后续的请求就会被限制到 10 rps 存在下
基于令牌桶算法实现的SpringBoot分布式无锁限流插件
本文档不会是最新的,最新的请看Github! 1.简介 基于令牌桶算法和漏桶算法实现的纳秒级分布式无锁限流插件,完美嵌入SpringBoot.SpringCloud应用,支持接口限流.方法限流.系统限流.IP限流.用户限流等规则,支持设置系统启动保护时间(保护时间内不允许访问),提供快速失败与CAS阻塞两种限流方案,开箱即用. 2.Maven <dependency> <groupId>cn.yueshutong</groupId> <artifactId>
15行python代码,帮你理解令牌桶算法
本文转载自: http://www.tuicool.com/articles/aEBNRnU 在网络中传输数据时,为了防止网络拥塞,需限制流出网络的流量,使流量以比较均匀的速度向外发送,令牌桶算法就实现了这个功能, 可控制发送到网络上数据的数目,并允许突发数据的发送. 什么是令牌 从名字上看令牌桶,大概就是一个装有令牌的桶吧,那么什么是令牌呢? 紫薇格格拿的令箭,可以发号施令,令行禁止.在计算机的世界中,令牌也有令行禁止的意思,有令牌,则相当于得到了进行操作的授权,没有令牌,就什么都不能做.
【springcloud】2.eureka源码分析之令牌桶-限流算法
国际惯例原理图 代码实现 package Thread; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.atomic.AtomicLong; /** * @ProjectName: cutter-point * @Package: Thread * @ClassName: RateLimiter * @Autho
coding++:Semaphore—RateLimiter-漏桶算法-令牌桶算法
java中对于生产者消费者模型,或者小米手机营销 1分钟卖多少台手机等都存在限流的思想在里面. 关于限流 目前存在两大类,从线程个数(jdk1.5 Semaphore)和RateLimiter速率(guava) Semaphore:从线程个数限流 RateLimiter:从速率限流 目前常见的算法是漏桶算法和令牌算法 令牌桶算法.相比漏桶算法而言区别在于,令牌桶是会去匀速的生成令牌,拿到令牌才能够进行处理,类似于匀速往桶里放令牌 漏桶算法是:生产者消费者模型,生产者往木桶里生产数据,消费者按照
coding++:RateLimiter 限流算法之漏桶算法、令牌桶算法--简介
RateLimiter是Guava的concurrent包下的一个用于限制访问频率的类 <dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> <version>18.0</version> </dependency> 限流: 每个API接口都是有访问上限的,当访问频率或者并发量超过其承受范围时候,我们就必须
php 基于redis使用令牌桶算法 计数器 漏桶算法 实现流量控制
通常在高并发和大流量的情况下,一般限流是必须的.为了保证服务器正常的压力.那我们就聊一下几种限流的算法. 计数器计数器是一种最常用的一种方法,在一段时间间隔内,处理请求的数量固定的,超的就不做处理. demo public function SpeedCounter() { $redis = new \Redis(); $redis->connect('127.0.0.1', 6379); // 最大请求数量 $maxCount = 100; //每分钟内,一个用户只能访问10次 $interv
使用Redis实现令牌桶算法
在限流算法中有一种令牌桶算法,该算法可以应对短暂的突发流量,这对于现实环境中流量不怎么均匀的情况特别有用,不会频繁的触发限流,对调用方比较友好. 例如,当前限制10qps,大多数情况下不会超过此数量,但偶尔会达到30qps,然后很快就会恢复正常,假设这种突发流量不会对系统稳定性产生影响,我们可以在一定程度上允许这种瞬时突发流量,从而为用户带来更好的可用性体验.这就是使用令牌桶算法的地方. 令牌桶算法原理 如下图所示,该算法的基本原理是:有一个容量为X的令牌桶,每Y单位时间内将Z个令牌放入该桶.如
Go 分布式令牌桶限流 + 兜底策略
上篇文章提到固定时间窗口限流无法处理突然请求洪峰情况,本文讲述的令牌桶线路算法则可以比较好的处理此场景. 工作原理 单位时间按照一定速率匀速的生产 token 放入桶内,直到达到桶容量上限. 处理请求,每次尝试获取一个或多个令牌,如果拿到则处理请求,失败则拒绝请求. 优缺点 优点 可以有效处理瞬间的突发流量,桶内存量 token 即可作为流量缓冲区平滑处理突发流量. 缺点 实现较为复杂. 代码实现 core/limit/tokenlimit.go 分布式环境下考虑使用 redis 作为桶和令牌的
令牌桶在数据通信QoS流量监管中的应用
令牌桶(Tocken Bucket,以下简称TB)在流量监管(以下简称CAR)功能中完成对流量进行限速的作用.流量监管主要是应用与网络边缘,从而保证核心设备的正常数据处理. 在流量监管的处理过程中,首先报文被分类,如果报文是某类报文,规定了流量特性,则进入令牌桶中进行处理,如果令牌桶中有足够的令牌可以用来发送报文,则报文可以通过可以被继续发送下去,如果令牌桶中的令牌不满足报文的发送条件,则报文被丢弃.这样就可以对某类报文的流量进行控制. 图1:令牌桶在流量监管中的处理过程示意图 令牌桶按用户设定
QoS令牌桶工作原理
QoS的一个重要作用就是对port流量进行监管,也就是限制port流量.但QoS是怎样做到这点的呢?那就是QoS的令牌桶机制了.以下是在笔者刚刚出版的<Cisco/H3C交换机高级配置与管理技术手冊>一书中,经过笔者充分理解后的全面诠释,大家看一下能否够理解.http://book.360buy.com/10959197.html 6.3.3 QoS令牌桶工作原理 QoS中的流量监管(Traffic Policing)就是对流量进行控制,通过监督进入网络port的流量速率,对超出部分的流量进行
CIR,CBS,EBS,PIR,PBS傻傻分不清楚?看这里!—-揭秘令牌桶
概述 春暖花开的时候,大家都开着汽车外出旅游欣赏美丽的风景,却被堵在高速公路上,你是否为此感到痛苦?但如果有一种机制可以评估高速公路上的车流量.控制车流情况,确保进入高速公路的汽车都能在路上安全畅行,你是不是会觉得很开心? 与此相似,网络发生拥塞的时候,也是一件非常痛苦的事情,如图1和图2所示. 图1 网络拥塞场景1 图2 网络拥塞场景2 如果不限制用户发送的业务流量大小,大量不断突发的业务数据会使网络更加拥挤,严重时会出现网络拥塞,造成业务出现异常,同时也浪费网络资源,如图3和图4所示. 图3
CIR,CBS,EBS,PIR,PBS 名词解释 令牌桶应用
为了达到上述目的,我们需要对进入网络的流量进行监督,实现CAR(Committed Access Rate). CAR:将进入网络的用户流量的速率限制在约定的范围之内,从而避免引起网络拥塞. CIR(Committed Information Rate):承诺信息速率,表示向C桶(单桶模式中只有一个令牌桶,称为C桶)中投放令牌的速率,即C桶允许传输或转发报文的平均速率. CBS(Committed Burst Size):承诺突发尺寸,表示C桶的容量,即C桶瞬间能够通过的承诺突发流量.相当于盛放
封装RateLimiter 令牌桶算法
自定义注解封装RateLimiter.实例: @RequestMapping("/myOrder") @ExtRateLimiter(value = 10.0, timeOut = 500) public String myOrder() throws InterruptedException { System.out.println("myOrder"); return "SUCCESS"; } 自定义注解 @Target(value = El
Redis令牌桶限流
一 .场景描述 在开发接口服务器的过程中,为了防止客户端对于接口的滥用,保护服务器的资源, 通常来说我们会对于服务器上的各种接口进行调用次数的限制.比如对于某个 用户,他在一个时间段(interval)内,比如 1 分钟,调用服务器接口的次数不能够 大于一个上限(limit),比如说 100 次.如果用户调用接口的次数超过上限的话,就直接拒绝用户的请求,返回错误信息. 服务接口的流量控制策略:分流.降级.限流等.本文讨论下限流策略,虽然降低了服务接口的访问频率和并发量,却换取服务接口和业务应用系
热门专题
vue-simple-uploader 源码
spring boot删除不同版本jar
C# intptr 转图片
ssm拦截器和跨域同时配置失效
js 模拟touchend
matlab中逻辑回归的R2
通过类获取Class无法通过getClass
特拉亨伯格速算在哪本书
react native和native的区别
wordpress 设计的网站
apriori算法原理图
vs如何打开debug版程序
c11与c99的区别
C# Process执行exe 并返回结果
postgresql 共享块
css 轻量级移动端 ui
ubantu 查看所有安装的软件
CART决策树 python
MongoDB笔记之聚合操作(一)
golang rpc 返回