首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
单片机ad采样交流信号如何计算
2024-11-05
一种用单片机AD采样方式来检测交流市电电压的方法
下面介绍一种用单片机AD采样的方式检测市电电压的方法 要检测交流市电的电压,通常有两种方法 一.通过频繁的采样后再求平均值来获得实际电压值 二.通过采样交流市电的峰值,再通过算法得出实际电压值 这里我们讲述峰值采样法的步骤: 1.在正半波时,频繁采样市电AD值,在每次采样后进行 从小到大排序并保存几个最大值的结果,分别放在R_SaveVolAC[0]..R_SaveVolAC[3] 2.在负半波时,把刚才所采样到的几个值中,提取R_SaveVolAC[1]的值作为 上个正半波的的最大值.(R_
实现 AD 采样,使用 LCD1602 显示 AD 数值
实现 AD 采样,使用 LCD1602 显示 AD 数值 写在前面 单片机内集成的A/D转换,一般都有相应的特殊功能寄存器来设置A/D的使能标志,参考电压,转换频率,通道选择,A/D输入口的属性(模拟量输入还是普通的I/O口),启动,停止控制等.有了这些寄存器,使得我们控制单片机的模拟量采集变得非常方便. A/D转换的基本原理是:将参考电平按最大的转换值量化,再利用输入模拟电平与参考电平的比例来求得输入电平的测量值(V测=V参*(AD量化值/AD转换的最大值)).有些MCU A/D转换的参考电平
stm32之TIM+ADC+DMA采集50HZ交流信号
http://cache.baiducontent.com/c?m=9d78d513d98207f04fece47f0d01d7174a02d1743ca6c76409c3e03984145b563710f4bb56644b5bc7823c390ef50f1aa8e737012a1e65f2dedf883d80f9c57478de6323706bd71c4dce5ff58b11769737902cefaa18ecb9e732e5adc5d3a95744ca245f3cdfae&p=8b2a975
AD采样模块采集带模拟量真空表值的实验
实验采用带模拟量,分辨率为1-5V,量程为0--101kpa的真空表 数据采集模块采用DAM-8021, 16位模块 算法描述如下: 真空表读数范围: 0到-101kpa 模拟量输出: 1-5V 一次AD数据采集结果为(由串口助手取得): >+03.921-00.000 此时真空表读数: 74.2 则系数A=(3.921-1)/74.2=0.0393 真空表模拟量输出修正系数: 是指真空表模拟量输出的偏差. 其取得方法为, 将真空去掉,让真空表读数为零, 读一次AD采样的结果, 例如其
STM32中AD采样的三种方法分析
在进行STM32F中AD采样的学习中,我们知道AD采样的方法有多种,按照逻辑程序处理有三种方式,一种是查询模式,一种是中断处理模式,一种是DMA模式.三种方法按照处理复杂方法DMA模式处理模式效率最高,其次是中断处理模式,最差是查询模式,相信很多学者在学习AD采样程序时,很多例程采用DMA模式,在这里我针对三种程序进行分别分析. 1.AD采样查询模式 在AD采样查询模式中,我们需要注意的是IO口的初始化配置,这里我采用PA2作为模拟采集的引脚(AIN2)和串口3作为打印输出. 具体如下:建立一个
AD采样问题总结
说明:来源http://bbs.csdn.net/topics/390899032论坛讨论 一个100HZ的正弦波,我用300HZ的采样率去采样,那么根据香农定律是不是一秒钟就采集到300个点,因为这个波形是100HZ,所以这一秒钟内就有一百个波形经过,那么300个点平均到每个波形上就只有3个点了,也就是一个波形上采集3个点, 采样率一般是Sps为单位,而不是用Hz, 例如300Sps,即300 Samples Per Second.100Hz的正弦,用300Sps的采样率,则平均每个正弦周期
关于Stm32定时器+ADC+DMA进行AD采样的实现
Stm32的ADC有DMA功能这都毋庸置疑,也是我们用的最多的!然而,如果我们要对一个信号(比如脉搏信号)进行定时采样(也就是隔一段时间,比如说2ms),有三种方法: 1.使用定时器中断每隔一定时间进行ADC转换,这样每次都必须读ADC的数据寄存器,非常浪费时间! 2.把ADC设置成连续转换模式,同时对应的DMA通道开启循环模式,这样ADC就一直在进行数据采集然后通过DMA把数据搬运至内存.但是这样做的话还得加一个定时中断,用来定时读取内存中的数据! 3.使用ADC的定时器触发ADC转换的功能,
AD采样的一个例子
用122.88k时钟采样153.6k的信号
ad采样后幅度的衰减
adc采集到的信号对低频有一定的衰减.因为要确定衰减的程度.通过da输出到示波器上观察. 数据如下: 输入 输出(enable) 输出(disable) 1v(20hz) 1v 0.88v 1v(10hz) 0.76v 0.76v 1v(8hz) 0.6v 0.68v 1v(5hz) 0.4v 0.5v 1v(3hz) 0.25v 0.35v 1v(2hz) 0.15v 0.25v 1v(1hz) 0.05v 0.12v 在8hz以下还是有比较到的衰减.这是使用示波器观察还是经过dac的于是想直
STM32 AD采样电压计算公式
在使用STM32的ADC进行检测电压时必须回涉及到电压值的计算,为了更高效率的获取电压,现在有以下三种方法: 你得到的结果是你当前AD引脚上的电压值相对于3.3V和4096转换成的数字.假如你得到的AD结果是ADC_DR这个变量,他们存在以下关系: ADC_DR/当前电压值 = 4096/3300毫伏如果你反过程想得到当前电压值,可以如下计算:unsigned long Voltage;Voltage = ADC_DR; //---假设你得到的AD结果存放到ADC_DR这个变量中;Voltage
单片机如何产生PWM信号
用89C52产生控制二相步进电机的程序,用PWM信号控制步进电机 用普通I/O口采用软件定时器中断可以模拟PWM输出 /*采用6MHz晶振,在P1.0脚上输出周期为2.5s,占空比为20%的脉冲信号*/ /*定时100ms,周期2.5s需25次中断,高电平0.5s需5次中断*/ #include <reg51.h> typedef unsigned char uchar; sbit P1_0=P1^; uchar time=; uchar period=; uchar high=; { TH0
STC12C5201AD AD采样+串口发送模板
#include<reg52.h> sfr ADC_CONTR = 0xBC; //ADC control register sfr ADC_RES = 0xBD; //ADC 8-bit result register sfr P1ASF = 0x9D; //P1 secondary function control register /* Define ADC operation const for ADC_CONTER */ #define ADC_POWER 0x80 #define
AD采样求平均STM32实现
iADC_read(, &u16NTC_1_Sample_Val_ARR[]); == ui8FirstSampleFlag) { ; i<; i++) { u16NTC_1_Sample_Val_ARR[i] = u16NTC_1_Sample_Val_ARR[]; } ui8FirstSampleFlag = ; } u16NTC_1_Sample_Val_ARR[] = (uint16_t) ((] + u16NTC_1_Sample_Val_ARR[] + u16NTC_1_Samp
AD转换器的主要指标
AD转换器的主要指标如下: (1)分辨率(Resolution).指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n的比值.分辨率又称精度,通常以数字信号的位数来表示.定义满刻度于2^n的比值(n为AD器件位数).对于5V满刻度,采用8位的AD时,分辨率为5V/256=0.01953V=19.53mv:当采用12位的AD时,分辨率则为5V/4096=0.00122V=0.122mv.位数越多,分辨率就越高 (2)转换速率(Conversion Rate).是指完成一次从模拟转换到数字的
在AD转换中的过采样和噪声形成
1. 直接量化的过采样AD转换 此类系统的模型可以用下图表示. 图中xa(t)是输入信号,e(t)是量化引入的噪声,xd[n]是最终得到的数字信号,包含分量xda和xde. 对于M倍过采样,信号与量化噪声的功率谱如下图. 从上图可以看出,M越大,信号与噪声之间的重叠部分就越少. 现在将上面的信号通过一个截止频率为PI/M的理想数字滤波器,信号功率不受影响,而PI/M之外的量化噪声将被滤除.再经过M倍降采样后,信号与量化噪声的功率谱就变成下面的样子(量化噪声只有滤波降采样前的1/M): 计算表明(
利用过采样技术提高ADC测量微弱信号时的分辨率
1. 引言 随着科学技术的发展,人们对宏观和微观世界逐步了解,越来越多领域(物理学.化学.天文学.军事雷达.地震学.生物医学等)的微弱信号需要被检测,例如:弱磁.弱光.微震动.小位移.心电.脑电等[1-3].测控技术发展到现在,微弱信号检测技术已经相对成熟,基本上采用以下两种方法来实现:一种是先将信号放大滤波,再用低或中分辨率的ADC进行采样,转化为数字信号后,再做信号处理,另一种是使用高分辨率ADC,对微弱信号直接采样,再进行数字信号处理.两种方法各有千秋,也都有自己的缺点.前一种方法,ADC
实验5 IIC通讯与AD/接DA接口
1.利用单片机控制PCF8591的AD转换,控制AD0和AD1电位器,在数码光上显示DA转换的值. 2.利用单片机控制PCF8591的DA转换,让发光二极管D1由暗到亮变化,整个过程时间差不多2s左右,再由亮到暗变化,循环变化. 以下代码将1.2实验合并成一个实验. Lab6.1 #include<reg51.h> #include <I2C.H> #define PCF8591 0x90 //PCF8591 地址 #define uchar unsigned char #
数字麦克风PDM信号采集与STM32 I2S接口应用(二)
在使用STM32的数字麦克风I2S接口时,计算采样率让人头疼,芯片手册上没有明确的说法,而手册上的计算方法经过测试确和实验不符.借助搜索引擎,大部分资料都是来自于开发板卖家或开发板论坛,主要是咪头采集然后配置WM89系列解码芯片,然后配合FatFS.MP3解码等模式,主要是讲解I2S录音.存储.放音等.外文资料得到的也寥寥无几,也没有找到讲解STM32数字麦克风配置.计算的文档.加上网上资料转载.抄袭.浅尝辄止的笔记教程,这些更是让检索大海捞针,过程艰辛一言难尽,有些网文三言两语抑或作者都没有搞
AVR单片机教程——示波器
本文隶属于AVR单片机教程系列. 在用DAC做了一个稍大的项目之后,我们来拿ADC开开刀.在本讲中,我们将了解0.96寸OLED屏,移植著名的U8g2库到我们的开发板上,学习在屏幕上画直线的算法,编写一个示波器程序,使用EEPROM加入人性化功能,最后利用示波器观察555定时器.放大电路.波形变换电路的各种波形. OLED屏 我们使用的是0.96寸OLED屏,它由128*64个像素点构成,上16行为蓝色,下48行为黄色,两部分之间有大约两像素的空隙.虽然有两种颜色,但每个像素点都只能发出一种
AD转换器的主要技术指标
1)分辩率(Resolution) 指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n的比值.分辩率又称精度,通常以数字信号的位数来表示. 2) 转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数.积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级.采样时间则是另外一个概念,是指两次转换的间隔.为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率.因
热门专题
iphone微信小程序授权登录无效
楼兰图腾 中 树状数组怎么理解
宝塔配置djangonginx
asp.net 视图嵌套
burpsuite 证书无效
flat delta vmdk合并
lzw压缩算法把数据压大了
dataframe datetime64ns转化日期
前端页面如何定位鼠标左键点击就会消失的元素
java 获取zk连接
VNCTF2022公开赛
如何在ubuntu下安装python的networkx
open函数中,w 能实现文件读写功能
android 卡顿监控
IONIC splash被裁剪
pprint.pprint()数据丢失
.net HttpContext.Items 传递数据
gettimeofday获取的执行时间
c语言socket read
Python环境变量配置win8