首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
双索引dataframe数据选取
2024-09-07
Pandas 如何通过获取双(多)重索引获取指定行DataFrame数据
图片看不清楚的话,可以右键选择:“在新标签页中打开图片(I)” 参数 df.loc[(a,b),c]中第一个参数元组为索引内容,a为level0索引对应的内容,b为level1索引对应的内容 因为df是一个dataframe,所以要用c来指定列 准备数据 先对数据设置多重索引: 根据索引取指定行 通过三重索引去取指定行数据: 通过双重索引去取指定行: 根据索引取指定列 通过三重索引去取指定列数据: 通过双重索引去取指定列数据:
Pandas DataFrame 数据选取和过滤
This would allow chaining operations like: pd.read_csv('imdb.txt') .sort(columns='year') .filter(lambda x: x['year']>1990) # <---this is missing in Pandas .to_csv('filtered.csv') For current alternatives see: http://stackoverflow.com/questions/11869
python数据分析之pandas数据选取:df[] df.loc[] df.iloc[] df.ix[] df.at[] df.iat[]
1 引言 Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用.本文主要介绍Pandas的几种数据选取的方法. Pandas中,数据主要保存为Dataframe和Series是数据结构,这两种数据结构数据选取的方式基本一致,本文主要以Dataframe为例进行介绍. 在Dataframe中选取数据大抵包括3中情况: 1)行(列)选取(单维度选取):df[].这种情况一次只能选取行或者列,即一次选取中,只能为行或者列设置筛选条件(只能为一个维度设置筛选条件). 2
pandas学习(创建多层索引、数据重塑与轴向旋转)
pandas学习(创建多层索引.数据重塑与轴向旋转) 目录 创建多层索引 数据重塑与轴向旋转 创建多层索引 隐式构造 Series 最常见的方法是给DataFrame构造函数的index参数传递两个或更多的数组,Series也可以创建多层索引. s = Series(np.random.randint(0,150,size=6),index=[['a','a','b','b','c','c'],['期中','期末','期中','期末','期中','期末']]) # 输出 a 期中 59 期末 4
Python3 Pandas的DataFrame数据的增、删、改、查
Python3 Pandas的DataFrame数据的增.删.改.查 一.DataFrame数据准备 增.删.改.查的方法有很多很多种,这里只展示出常用的几种. 参数inplace默认为False,只能在生成的新数据块中实现编辑效果.当inplace=True时执行内部编辑,不返回任何值,原数据发生改变. import numpy as np import pandas as pd #测试数据. df = pd.DataFrame(data = [[']],index = [1,2,3],col
Pandas 横向合并DataFrame数据
需要将两个DataFrame进行横向拼接: 对 A_DataFrame 拼接一列数据: 数据样例如下: 将右侧source_df中的 “$factor” 列拼接到左侧qlib_df中,但左侧数据是分钟级的数据,右侧是“day”级的数据. 需要将“day”级数据的 “$factor” 填充到对应一天内的分钟级里面: 首先将二者的日期作为索引: 然后对其进行合并(pd.concat()) source_df = pd.concat([source_df, qlib_df['$factor']], a
python中pandas数据分析基础3(数据索引、数据分组与分组运算、数据离散化、数据合并)
//2019.07.19/20 python中pandas数据分析基础(数据重塑与轴向转化.数据分组与分组运算.离散化处理.多数据文件合并操作) 3.1 数据重塑与轴向转换1.层次化索引使得一个轴上拥有多个索引2.series多层次索引:(1)series的层次化索引:主要可以通过s[索引第1层:索引第二次]可以进行相应的索引(2)对于series可以通过s.unstack()函数将其转换为DataFrame具体举例代码如下:s=pd.Series(range(1,10),index=[["a&
数据可视化基础专题(六):Pandas基础(五) 索引和数据选择器(查找)
1.序言 如何切片,切块,以及通常获取和设置pandas对象的子集 2.索引的不同选择 对象选择已经有许多用户请求的添加,以支持更明确的基于位置的索引.Pandas现在支持三种类型的多轴索引. .loc主要是基于标签的,但也可以与布尔数组一起使用.当找不到物品时.loc会提高KeyError.允许的输入是: 单个标签,例如5或'a'(注意,它5被解释为索引的 标签.此用法不是索引的整数位置.). 列表或标签数组.['a', 'b', 'c'] 带标签的切片对象'a':'f'(注意,相反普通的Py
Elasticsearch .Net Client NEST 索引DataSet数据
NEST 索引DataSet数据,先序列化然后转成dynamic 类型进行索引: /// <summary> /// 索引dataset /// </summary> /// <param name="dataSet"></param> /// <param name="taskId"></param> public void Insert(DataSet dataSet,int taskId)
在DataFrame数据表里面提取需要的行
在DataFrame数据表里面提取需要的行 代码功能: 在DataFrame表格中使用loc(),得到我们想要的行,然后根据某一列元素的值进行排序 此代码中还展示了为DataFrame添加列,即直接name_DataFrame['diff']=___即可,同时可以依据新添加的列元素的值,来对dataframe进行排序 import pandas as pd unames = ['user_id', 'gender', 'age','occupation','zip'] users = pd.re
Pandas DataFrame数据的增、删、改、查
Pandas DataFrame数据的增.删.改.查 https://blog.csdn.net/zhangchuang601/article/details/79583551 #删除列 df_2 = df_1.drop(columns=['deptNo','routeNo']).copy() del df_2['trp_vehicleType'] #列名变更 df_3 = df_2.rename(columns={'dingdanNo':'订单号', 'createTime':'建单时间'})
spark 将dataframe数据写入Hive分区表
从spark1.2 到spark1.3,spark SQL中的SchemaRDD变为了DataFrame,DataFrame相对于SchemaRDD有了较大改变,同时提供了更多好用且方便的API.DataFrame将数据写入hive中时,默认的是hive默认数据库,insertInto没有指定数据库的参数,本文使用了下面方式将数据写入hive表或者hive表的分区中,仅供参考.1.将DataFrame数据写入到Hive表中从DataFrame类中可以看到与hive表有关的写入Api有以下几个:
将DataFrame数据如何写入到Hive表中
1.将DataFrame数据如何写入到Hive表中?2.通过那个API实现创建spark临时表?3.如何将DataFrame数据写入hive指定数据表的分区中? 从spark1.2 到spark1.3,spark SQL中的SchemaRDD变为了DataFrame,DataFrame相对于SchemaRDD有了较大改变,同时提供了更多好用且方便的API. DataFrame将数据写入hive中时,默认的是hive默认数据库,insertInto没有指定数据库的参数,本文使用了下面方式将数据写入
将pandas的DataFrame数据写入MySQL数据库 + sqlalchemy
将pandas的DataFrame数据写入MySQL数据库 + sqlalchemy import pandas as pd from sqlalchemy import create_engine ##将数据写入mysql的数据库,但需要先通过sqlalchemy.create_engine建立连接,且字符编码设置为utf8,否则有些latin字符不能处理 yconnect = create_engine('mysql+mysqldb://root:password@localhost:330
Solrj API读取core 索引库数据
private static String zkHost = "ip:2181,ip:2181,ip:2181"; private static CloudSolrServer solrServer = new CloudSolrServer(zkHost);public static Map<String, Object> solrCloudR() throws Exception { Map<String, Object> mapResult = new H
吴裕雄--天生自然python学习笔记:pandas模块DataFrame 数据的修改及排序
import pandas as pd datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]] indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"] columns = ["语文", "数学", "英文", "自然", &
函数实现将 DataFrame 数据直接划分为测试集训练集
虽然 Scikit-Learn 有可以划分数据集的函数 train_test_split ,但在有些特殊情况我们只希望它将 DataFrame 数据直接划分为 train, test 而不是像 train_test_split 返回四个值.这里写了一个类似功能的函数: import numpy as np import pandas as pd from sklearn.utils import shuffle as reset def train_test_split(data, test_
Pandas:DataFrame数据选择方法(索引)
#首先创建我们的Series对象,然后合并到dataframe对象里面去 import pandas as pd import numpy as np area=pd.Series({,,,}) population=pd.Series({,,,}) data=pd.DataFrame({'area':area,'population':population})#备注:创建字典的结构时一定要遵循字典的数据结构 #也就是创建完字典之后一定要在字典的前后写上花括号,这个是一个很重要的习惯 print
Pandas系列(二)- DataFrame数据框
一.初识DataFrame dataFrame 是一个带有索引的二维数据结构,每列可以有自己的名字,并且可以有不同的数据类型.你可以把它想象成一个 excel 表格或者数据库中的一张表DataFrame是最常用的 Pandas 对象. 二.数据框的创建 1.字典套列表方式创建 index = pd.Index(data=["Tom", "Bob", "Mary", "James"], name="name"
Series转化为DataFrame数据
out=groupby_sum.ix[:'to_uid','sum(diamonds)']使用ix在提取数据的时候,out的数据类型通常为<class 'pandas.core.series.Series'>,即为Series类型. 但是Series类型没有直接的to_excel方法(out.to_excel('data2.xlsx','Sheet1')),所以是不能直接写入到文件中的, 解决办法:将Series转化为DataFrame,然后再写入问价中即可.Series.to_frame(n
热门专题
安装jenkins低版本
sql server dateadd函数 120和112
core开发的网页自定义错误页面
web程序类似Excel操作
war包怎么还原成项目
sublime text3 minify 下载
SAP ECC MM操作手册
PY编程按下鼠标左键后,过100ms才触发鼠标左键的效果
一、Windows PE开发环境(开发语言)
vm Net模式下如何ping通主机
jvm.log 很大
java 校验50个汉字
设计一个字符串类(类名自拟)
latex 圆圈和框
java playwright 显示浏览器界面
sqlserver将geometry转换为varchar
删除文件提示再循环技巧
pypi官方有对应的包但pip安装时找不到
redis多库如何迁移到redis集群
idea生成webservice客户端