多柱汉诺塔可以用Frame–Stewart算法来解决. The Frame–Stewart algorithm, giving a presumably optimal solution for four (or even more) pegs, is described below: Let be the number of disks. Let be the number of pegs. Define to be the minimum number of moves required t
Description You all must know the puzzle named "The Towers of Hanoi". The puzzle has three pegs and N discs of different radii, initially all disks are located on the first peg, ordered by their radii - the largest at the bottom, the smallest at
B . [ 例 题 2 ] 奇 怪 汉 诺 塔 B. [例题2]奇怪汉诺塔 B.[例题2]奇怪汉诺塔 题目描述 汉诺塔问题,条件如下: 这里有 A A A. B B B. C C C 和 D D D 四座塔. 这里有 n n n个圆盘, n n n 的数量是恒定的. 每个圆盘的尺寸都不相同. 所有的圆盘在开始时都堆叠在塔 A A A上,且圆盘尺寸从塔顶到塔底逐渐增大. 我们需要将所有的圆盘都从塔 A A A 转移到塔 D D D 上. 每次可以移动一个圆盘,当塔为空塔或者塔顶圆盘尺寸大于被移动圆
汉诺塔II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 6189 Accepted Submission(s): 3021 Problem Description 经典的汉诺塔问题经常作为一个递归的经典例题存在.可能有人并不知道汉诺塔问题的典故.汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往