参考文献 [1]Rich feature hierarchies for accurate object detection and semantic segmentation [2]Fast R-CNN [3]Faster R-CNN: towards real-time object detection with region proposal networks 1. 概述 图像分类,检测及分割是计算机视觉领域的三大任务.图像分类模型是将图像划分为单个类别,通常对应于图像中最突出的物体.但是
心律失常数据库 目前,国际上公认的标准数据库包含四个,分别为美国麻省理工学院提供的MIT-BIH(Massachusetts Institute of Technology-Beth Israel Hospital Database, MIT-BIH)数据库.美国心脏学会提供的AHA( American heart association,AHA)数据库.欧共体CSE( Common Standards for Quantitative Electrocardiograph,CSE)数据库.欧洲
State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [7] and Fast R-CNN [5] have reduced the running time of these detection networks, exposing region proposal computati
一.实验拓扑 二.实验步骤 1.给主机设置IP,网关:给交换机划分VLAN,给VLAN划分端口,给VLAN设置IP 2.启用OSPF.宣告网段(network 网络地址 反掩码 区域名 其中0区域为主干区域) ▲SwitchA 的相关配置 Switch>enable Switch#config Configuring from terminal, memory, or network [terminal]? Enter configuration commands, one per li