首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
多元线性回归模型R2检验F检验
2024-09-07
多元线性回归检验t检验(P值),F检验,R方等参数的含义
做线性回归的时候,检验回归方程和各变量对因变量的解释参数很容易搞混乱,下面对这些参数进行一下说明: 1.t检验:t检验是对单个变量系数的显著性检验 一般看p值: 如果p值小于0.05表示该自变量对因变量解释性很强. 2.F检验:F检验是对整体回归方程显著性的检验,即所有变量对被解释变量的显著性检验 3.P值:P值就是t检验用于检测效果的一个衡量度,t检验值大于或者p值小于0.05就说明该变量前面的系数显著,选的这个变量是有效的. 4.R方:拟合优度检验 5.调整后的R方: 小结: t检
多元线性回归 ——模型、估计、检验与预测
一.模型假设 传统多元线性回归模型 最重要的假设的原理为: 1. 自变量和因变量之间存在多元线性关系,因变量y能够被x1,x2-.x{k}完全地线性解释:2.不能被解释的部分则为纯粹的无法观测到的误差 其它假设主要为: 1.模型线性,设定正确: 2.无多重共线性: 3.无内生性: 4.随机误差项具有条件零均值.同方差.以及无自相关: 5.随机误差项正态分布 具体见另一篇文章:回归模型的基本假设 二.估计方法 目标:估计出多元回归模型的参数 注:下文皆为矩阵表述,X为自变量矩阵(n*k维),y为因
SPSS--回归-多元线性回归模型案例解析
多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程 为: 毫无疑问,多元线性回归方程应该为: 上图中的 x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中: 代表随机误差, 其中随机误差分为:可解释的误差 和 不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义
R语言解读多元线性回归模型
转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止一个,比如对于知识水平越高的人,收入水平也越高,这样的一个结论.这其中可能包括了因为更好的家庭条件,所以有了更好的教育:因为在一线城市发展,所以有了更好的工作机会:所处的行业赶上了大的经济上行周期等.要想解读这些规律,是复杂的.多维度的,多元回归分析方法更适合解读生活的规律. 由于本文为非统计的专业
多元线性回归模型的特征压缩:岭回归和Lasso回归
多元线性回归模型中,如果所有特征一起上,容易造成过拟合使测试数据误差方差过大:因此减少不必要的特征,简化模型是减小方差的一个重要步骤.除了直接对特征筛选,来也可以进行特征压缩,减少某些不重要的特征系数,系数压缩趋近于0就可以认为舍弃该特征. 岭回归(Ridge Regression)和Lasso回归是在普通最小二乘线性回归的基础上加上正则项以对参数进行压缩惩罚. 首先,对于普通的最小二乘线性回归,它的代价函数是: 通过拟合系数β来使RSS最小.方法很简单,求偏导利用线性代数解方程组即可. 根据线
卡方分布 | t检验 | F检验 | 卡方检验 | 假设检验 | 各种检验持续总结
Chi-square distribution introduction 这个视频真的好,完美地解释了卡方统计量是怎么来的! 我们有一个标准正态分布的总体,我们从其中抽一次,取该值的平方就是Q1统计量:抽两次,取两次值得平方和,就是Q2统计量:以此类推... 这就是自由度逐渐增加的卡方分布. 卡方分布 可以用于比较两组数(A和B)是否来源于一个分布,假设B和A同分布(通常假设为正态分布),那么就可以推出B的期望值. 然后就可以计算这两组数的卡方统计量,查表. 常见的一个例子就是检验赌博机/硬币是
【R】多元线性回归
R中的线性回归函数比较简单,就是lm(),比较复杂的是对线性模型的诊断和调整.这里结合Statistical Learning和杜克大学的Data Analysis and Statistical Inference的章节以及<R语言实战>的OLS(Ordinary Least Square)回归模型章节来总结一下,诊断多元线性回归模型的操作分析步骤. 1.选择预测变量 因变量比较容易确定,多元回归模型中难在自变量的选择.自变量选择主要可分为向前选择(逐次加使RSS最小的自变量),向后
ML之多元线性回归
转自:http://www.cnblogs.com/zgw21cn/archive/2009/01/07/1361287.html 1.多元线性回归模型 假定被解释变量与多个解释变量之间具有线性关系,是解释变量的多元线性函数,称为多元线性回归模型.即 (1.1) 其中为被解释变量,为个解释变量,为个未知参数,为随机误差项. 被解释变量的期望值与解释变量的线性方程为: (1.2) 称为多元总体线性回归方程,简称总体回归方程. 对于组观测值,其方程组形式为: (1.3) 即 其矩阵形式为 =+
机器学习——Day 3 多元线性回归
写在开头 由于某些原因开始了机器学习,为了更好的理解和深入的思考(记录)所以开始写博客. 学习教程来源于github的Avik-Jain的100-Days-Of-MLCode 英文版:https://github.com/Avik-Jain/100-Days-Of-ML-Code 中文翻译版:https://github.com/MLEveryday/100-Days-Of-ML-Code 本人新手一枚,所以学习的时候遇到不懂的会经常百度,查看别人的博客现有的资料.但是由于不同的人思维和写作风格
多元线性回归公式推导及R语言实现
多元线性回归 多元线性回归模型 实际中有很多问题是一个因变量与多个自变量成线性相关,我们可以用一个多元线性回归方程来表示. 为了方便计算,我们将上式写成矩阵形式: Y = XW 假设自变量维度为N W为自变量的系数,下标0 - N X为自变量向量或矩阵,X维度为N,为了能和W0对应,X需要在第一行插入一个全是1的列. Y为因变量 那么问题就转变成,已知样本X矩阵以及对应的因变量Y的值,求出满足方程的W,一般不存在一个W是整个样本都能满足方程,毕竟现实中的样本有很多噪声.最一般的求解W的方式是最小
day-12 python实现简单线性回归和多元线性回归算法
1.问题引入 在统计学中,线性回归是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析.这种函数是一个或多个称为回归系数的模型参数的线性组合.一个带有一个自变量的线性回归方程代表一条直线.我们需要对线性回归结果进行统计分析. 例如,假设我们已知一些学生年纪和游戏时间的数据,可以建立一个回归方程,输入一个新的年纪时,预测该学生的游戏时间.自变量为学生年纪,因变量为游戏时间.当只有一个因变量时,我们称该类问题为简单线性回归.当游戏时间与学生年纪和学生性别有关
线性回归模型(Linear Regression)及Python实现
线性回归模型(Linear Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 对于一份数据,它有两个变量,分别是Petal.Width和Sepal.Length,画出它们的散点图.我们希望可以构建一个函数去预测Sepal.Length,当我们输入Petal.Width时,可以返回一个预测的Sepal.Length.从散点图可以发现,可以用一条直线去拟合,这时我们可以构建一元线性回归模型:hθ(x) = θ0 + θ1x1 (x1= Pe
100天搞定机器学习|Day3多元线性回归
前情回顾 [第二天100天搞定机器学习|Day2简单线性回归分析][1],我们学习了简单线性回归分析,这个模型非常简单,很容易理解.实现方式是sklearn中的LinearRegression,我们也学习了LinearRegression的四个参数,fit_intercept.normalize.copy_X.n_jobs.然后介绍了LinearRegression的几个用法,fit(X,y).predict(X).score(X,y).最后学习了matplotlib.pyplot将训练集结果和
[tensorflow] 线性回归模型实现
在这一篇博客中大概讲一下用tensorflow如何实现一个简单的线性回归模型,其中就可能涉及到一些tensorflow的基本概念和操作,然后因为我只是入门了点tensorflow,所以我只能对部分代码给出相关的tensorflow的概念. 线性回归模型的表达式如下: 其中,是权重,是偏置,和则是输入数据和对应的模型预测值. 在tensorflow中,是用图来表示计算的形式的,图中的每个节点称为一个op(即operation),每个operation获得相关张量(Tensor)后进行数值计算,每个
TensorFlow从0到1之TensorFlow实现多元线性回归(16)
在 TensorFlow 实现简单线性回归的基础上,可通过在权重和占位符的声明中稍作修改来对相同的数据进行多元线性回归. 在多元线性回归的情况下,由于每个特征具有不同的值范围,归一化变得至关重要.这里是波士顿房价数据集的多重线性回归的代码,使用 13 个输入特征. 波士顿房价数据集可从http://lib.stat.cmu.edu/datasets/boston处获取. 多元线性回归的具体实现 导入需要的所有软件包: 因为各特征的数据范围不同,需要归一化特征数据.为此定义一个归一化函数.另外
TensorFlow多元线性回归实现
多元线性回归的具体实现 导入需要的所有软件包: 因为各特征的数据范围不同,需要归一化特征数据.为此定义一个归一化函数.另外,这里添加一个额外的固定输入值将权重和偏置结合起来.为此定义函数 append_bias_reshape().该技巧有时可有效简化编程: 现在使用 TensorFlow contrib 数据集加载波士顿房价数据集,并将其划分为 X_train 和 Y_train.注意到 X_train 包含所需要的特征.可以选择在这里对数据进行归一化处理,也可以添加偏置并对网络数据重
T检验与F检验的区别_f检验和t检验的关系
1,T检验和F检验的由来 一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定. 通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果.倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少.很罕有的情况下才出现:那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒
通俗理解T检验和F检验
来源: http://blog.sina.com.cn/s/blog_4ee13c2c01016div.html 1,T检验和F检验的由来 一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定. 通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果.倘若经比较后发现,出现这结果的机率很少,亦即是说,
通俗理解T检验与F检验的区别【转】
转自:http://blog.sina.com.cn/s/blog_4ee13c2c01016div.html1,T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定. 通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果.倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少.
u检验、t检验、F检验、X2检验 (转)
http://blog.renren.com/share/223170925/14708690013 常用显著性检验 1.t检验 适用于计量资料.正态分布.方差具有齐性的两组间小样本比较.包括配对资料间.样本与均数间.两样本均数间比较三种,三者的计算公式不能混淆. 2.t'检验 应用条件与t检验大致相同,但t′检验用于两组间方差不齐时,t′检验的计算公式实际上是方差不齐时t检验的校正公式. 3.U检验 应用条件与t检验基本一致,只是当大样本时用U检验,而小样本时则用t检验,t检验可以代替U检验.
热门专题
安卓真机调试与打包APP有什么区别
域名如何解析到centos 服务器
word中表格无内容怎么填斜线
思科交换机配置管理口ip
手机QQ传输文字是utf8编码么
plsql 判断Type类型字段是否为空
vue element ui前端权限管理系统
PHPManager官网下载
视频rtp包加密处理
html form表单带上token
第三方动态库 头文件
springboot 优化配置
centos7 mysql8 无法停止
netcore 多个context
wx069ba97219f66d99 插件未授权使用
apache jmeter 5.5中文设置
vbs打开bat文件
windowsserver打印服务
openAMP为什么需要两个virtqueue
H5 rem 适配屏幕