总是跑数据,却对数据一无所知,这说不过去吧. 看几篇文章吧 Sequencing depth and coverage: key considerations in genomic analyses(只讲二代) Assembly of large genomes using second-generation sequencing(参考文献) Identification of optimum sequencing depth especially for de novo genome asse
1)下载MACS2 下载网址: https://pypi.python.org/pypi/MACS2 (有下载网址和安装.使用示例) $ python setup.py install出现如下问题: MACS2/cProb.c -o error: #error Do not use this file, it is the result of a failed Cython compilation. error: command 'gcc' failed with exit status 1
比对 The raw Drop-seq data was processed with the standard pipeline (Drop-seq tools version 1.12 from McCarroll laboratory). Reads were aligned to the ENSEMBL release 84Mus musculusgenome. 10x Genomics data was processed using the same pipeline as for
转录组的组装Stingtie和Cufflinks Posted: 十月 18, 2017 Under: Transcriptomics By Kai no Comments 首先这两款软件都是用于基于参考基因组的转录组组装,当然也可用于转录本的定量.前者于2016年的 protocol上发表的转录组流程HISAT, StringTie and Ballgown后被广泛使用,后者则是老牌的RNA分析软件了.在算法上来说Stringtie使用的是流神经网络算法,Cufflinks则是吝啬算法:
1)简介 edgeR作用对象是count文件,rows 代表基因,行代表文库,count代表的是比对到每个基因的reads数目.它主要关注的是差异表达分析,而不是定量基因表达水平. edgeR works on a table of integer read counts, with rows corresponding to genes and columns to independent libraries. The counts represent the total number of
A survey of best practices for RNA-seq data analysis RNA-seq数据分析指南 内容 前言 各位同学/老师,大家好,现在由我给大家讲讲我的文献阅读报告! A survey of best practices for RNA-seq data analysis ,我把它叫做RNA-seq数据分析指南.这篇文章是由佛罗里达大学等单位的研究人员在1月26日发表在Genome Biology上的,该期刊的影响因子有10.8分.这是这篇文章的通讯作者,
The C++ executable module examples This page provides usage examples for the executable module. Extended documentation for all of the options can be found on the manual page. Running the program Getting basic file statistics Applying a filter Writing
参考:https://f1000research.com/articles/4-1521/v1 https://www.biostars.org/p/171766/ http://www.rna-seqblog.com/rpkm-fpkm-and-tpm-clearly-explained/ It used to be when you did RNA-seq, you reported your results in RPKM (Reads Per Kilobase Million) or F
Genome Coverage and the OR Subgenome 因为: 爬行类动物的的gene numbers比较大,而birds 的 gene numbers 处于(182-688) 其中: (1)gene 扩张和缩小(之后会详细说明) (2)chicken and zebra finch (long insert sanger)were significantly larger than those in other birds(short insert NGS), 所以认为测序方