不多说,直接上干货! You must choose one of the following types of TensorFlow to install: TensorFlow with CPU support only. If your system does not have a NVIDIA® GPU, you must install this version. Note that this version of TensorFlow is typically much easier
TensorFlow指定GPU/CPU进行训练和输出devices信息 1.在tensorflow代码中指定GPU/CPU进行训练 with tf.device('/gpu:0'): .... with tf.device('/gpu:1'): ... with tf.device('/cpu:0'): ... 2.输出devices的信息 在指定devices的时候往往不知道具体的设备信息,这时可用下面的代码查看对应的信息 进入Python环境 from tensorflow.python.c
1. 已经安装cuda但是tensorflow仍然使用cpu加速的问题 电脑上同时安装了GPU和CPU版本的TensorFlow,本来想用下面代码测试一下GPU程序,但无奈老是没有调用GPU. import tensorflow as tf with tf.device('/cpu:0'): a = tf.constant ([1.0, 2.0, 3.0], shape=[3], name='a') b = tf.constant ([1.0, 2.0, 3.0], shape=[3], nam
Windows 10 Tensorflow 2 gpu正式版安装和更新日志 Tensorflow 2.0.0 released on2019年10月1日星期二 Link: https://github.com/tensorflow/tensorflow/releases/tag/v2.0.0 本日志是win 10下tf2.0.0正式版的重新安装/更新的精确技术文档. Steps as follows: Step 1: enter into tf installing folder C:\Prog
Google TensorFlow for GPU安装.配置大坑 从本周一开始(12.05),共4天半的时间,终于折腾好Google TensorFlow for GPU版本,其间跳坑无数,摔得遍体鳞伤,曾一度怀疑自己廉颇老矣,不能饭也:后,凭借自己多年积累得还算扎实的基本功,终于从无数个坑中爬出,百转千回,成功安装了TensorFLow,如下图: 题外话,图中a+b的输出结果为42是有意为之,因为<银河系漫游指南>中关于生命.宇宙及一切问题的终极答案就是42 先小小庆祝一下,然后再把其中几个
GPU与CPU CPU CPU,也就是中央处理器,结构主要包括控制器(指挥各部分工作).运算器(实现数据加工).寄存器.高缓以及数据/控制/状态总线.计算机的性能很大程度上依赖于CPU,CPU的功能包括程序控制(控制指令执行的先后顺序).操作控制(控制指令操作).时间控制(控制各种操作的时间).数据加工(实现数据的算术和逻辑运算)等,简单来说,CPU就是对指令流和数据流进行时间和空间上的控制.CPU擅长处理诸如分布式.协调控制这种复杂运算,具有很强的通用性. 由于CPU中存储单元和控制单元占用了