首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
实例代码 kafka消息的顺序性
2024-09-04
分布式场景下Kafka消息顺序性的思考
如果业务中,对于kafka发送消息异步消费的场景,在业务上需要实现在消费时实现顺序消费, 利用kafka在partition内消息有序的特点,消息消费时的有序性. 1.在发送消息时,通过指定partition hash 2.consumer 消费消息时,需要使用亲缘性线程池进行消费,才能实现消息的基本有序.否则即使通过发送时指定partition,在消费端由于线程池的异步消费,消息之间的处理都是并发进行的,消息就会被打乱. 上面的方式基本可以实现消息的消费顺序性,除了在极端场景下,比如: 1.进
Pulsar の 保证消息的顺序性、幂等性和可靠性
原文链接:Pulsar の 保证消息的顺序性.幂等性和可靠性 一.背景 前面两篇文章,已经介绍了关于Pulsar消费者的详细使用和自研的Pulsar组件. 接下来,将简单分析如何保证消息的顺序性.幂等性和可靠性:但并不会每个分析都会进行代码实战,进行代码实战的都是比较有意思的点,如消费消息如何保证顺序性和幂等性,而其他的其实都是比较简单的,就不做代码实战了. 二.特性分析 2.1.顺序性 保证消息是按顺序发送,按顺序消费,一个接着一个. 2.1.1.活动图 2.1.2.分析 producer:
RabbitMQ保证消息的顺序性
当我们的系统中引入了MQ之后,不得不考虑的一个问题是如何保证消息的顺序性,这是一个至关重要的事情,如果顺序错乱了,就会导致数据的不一致. 比如:业务场景是这样的:我们需要根据mysql的binlog日志同步一个数据库的数据到另一个库中,加如在binlog中对同一条数据做了insert,update,delete操作,我们往MQ顺序写入了insert,update,delete操作的三条消息,那么根据分析,最终同步到另一个库中,这条数据是被删除了的.但是,如果这三条消息不是按照inse
MQ如何解决消息的顺序性
一.消息的顺序性 1.延迟队列:设置一个全局变量index,根据实际情况一次按照index++的逻辑一次给消息队列设置延迟时间段,可以是0.5s,甚至1s; 弊端:如果A,B,C..消息队列消费时间不一致或者出现网络延迟,就会存在后者比前者先消费完的场景: 2.统一消费端:当A消费成功后,通过ACK或者consummer-success通知B进行消费 弊端:降低了系统的吞吐量,需要更多的异常处理机制 3.RocketMQ采用轮询所有队列的方式来确定消息被发送到哪一个队列(负载均衡),比如下面示例
Kafka如何保证消息的顺序性
1. 问题 比如说我们建了一个 topic,有三个 partition.生产者在写的时候,其实可以指定一个 key,比如说我们指定了某个订单 id 作为 key,那么这个订单相关的数据,一定会被分发到同一个 partition 中去,而且这个 partition 中的数据一定是有顺序的.消费者从 partition 中取出来数据的时候,也一定是有顺序的.到这里,顺序还是 ok 的,没有错乱.接着,我们在消费者里可能会搞多个线程来并发处理消息.因为如果消费者是单线程消费处理,而处理比较耗时的话,比
kafka如何保证消息得顺序性
1. 问题 比如说我们建了一个 topic,有三个 partition.生产者在写的时候,其实可以指定一个 key,比如说我们指定了某个订单 id 作为 key,那么这个订单相关的数据,一定会被分发到同一个 partition 中去,而且这个 partition 中的数据一定是有顺序的.消费者从 partition 中取出来数据的时候,也一定是有顺序的.到这里,顺序还是 ok 的,没有错乱.接着,我们在消费者里可能会搞多个线程来并发处理消息.因为如果消费者是单线程消费处理,而处理比较耗时的话,比
分布式消息队列RocketMQ&Kafka -- 消息的“顺序消费”
在说到消息中间件的时候,我们通常都会谈到一个特性:消息的顺序消费问题.这个问题看起来很简单:Producer发送消息1, 2, 3... Consumer按1, 2, 3...顺序消费. 但实际情况却是:无论RocketMQ,还是Kafka,缺省都不保证消息的严格有序消费! 这个特性看起来很简单,但为什么缺省他们都不保证呢? “严格的顺序消费”有多么困难 下面就从3个方面来分析一下,对于一个消息中间件来说,”严格的顺序消费”有多么困难,或者说不可能. 发送端 发送端不能异步发送,异步发送在发送失
【JAVA】笔记(3)---封装;如何选择声明静态变量还是实例变量;如何选择声明静态方法还是实例方法;静态代码块与实例代码块的执行顺序与用途;
封装: 1.目的:保证对象中的实例变量无法随意修改/访问,只能通过我们自己设定的入口,出口(set / get)来间接操作:屏蔽类中复杂的结构,使我们程序员在主方法中关联对象写代码时,思路/代码格式更加清晰: 2.操作:将某些属性私有化(private修饰),再声明相应的 set ,get 方法,这样我们就可以通过 set / get 方法来 修改 / 访问 相应的私有属性了: 嘴上说不如举栗子: class tool{ private int a; private String b; priv
如何保证MQ的顺序性?比如Kafka
三.如何保证消息的顺序性 1. rabbitmq 拆分多个queue,每个queue一个consumer,就是多一些queue而已,确实是麻烦点:或者就一个queue但是对应一个consumer,然后这个consumer内部用内存队列做排队,然后分发给底层不同的worker来处理 2. kafka 写入一个partition中的数据一定是有序的,生产者在写的时候 ,可以指定一个key,比如指定订单id作为key,这个订单相关数据一定会被分发到一个partition中去.消费者从partition
实际业务处理 Kafka 消息丢失、重复消费和顺序消费的问题
关于 Kafka 消息丢失.重复消费和顺序消费的问题 消息丢失,消息重复消费,消息顺序消费等问题是我们使用 MQ 时不得不考虑的一个问题,下面我结合实际的业务来和你分享一下解决方案. 消息丢失问题 比如我们使用 Kakfa 时,以下场景都会发生消息丢失: producer -> broker (生产者生产消息) broker -> broker (集群环境,broker 同步给其他 broker) broker -> consumer (消费者消费消息) 解决方案也很简单,设置 acks
rocketmq总结(消息的顺序、重复、事务、消费模式)
rocketmq总结(消息的顺序.重复.事务.消费模式) 参考: http://www.cnblogs.com/wxd0108/p/6038543.html https://www.cnblogs.com/520playboy/p/6750023.html https://blog.csdn.net/chunlongyu/article/details/53977819 https://blog.csdn.net/zhanglianhai555/article/details/77604582?
RabbitMQ多消费者顺序性消费消息实现
最近起了个项目消息中心,用来中转各个系统中产生的消息,用到的是RabbitMQ,由于UAT环境.生产环境每台消费者服务都是多台,有些消息要求按顺序消费,所以需要采取一定的措施保证消息的顺序消费,下面讲下我们不断优化的三种方法: 1.我们最开始考虑的比较简单,采用的direct交换机,指定特定消费者服务器监听队列,其他消费者服务器不监听.比如现在有C1.C2.C3三台消费者机器,我们决定C1消费消息,C2.C3不监听.我们在启动C1的时候,启动脚本中添加C1_IP,在代码中做处理,消费者服务器启动
Java父类与子类中静态代码块 实例代码块 静态变量 实例变量 构造函数执行顺序
实例化子类时,父类与子类中的静态代码块.实例代码块.静态变量.实例变量.构造函数的执行顺序是怎样的? 代码执行的优先级为: firest:静态部分 second:实例化过程 详细顺序为: 1.父类静态代码块与父类静态变量(取决于代码书写顺序) 2.子类静态代码块与子类静态变量(取决于代码书写顺序) 3.父类实例变量与父类代码块(取决于代码书写顺序) 4.父类构造函数 5.子类实例变量与父类代码块(取决于代码书写顺序) 6.子类构造函数 在JVM加载完类以后,类在被使用的时候初始化,静态部分只在类
初试kafka消息队列中间件二(采用java代码收发消息)
初试kafka消息队列中间件二(采用java代码收发消息) 上一篇 初试kafka消息队列中间件一 今天的案例主要是将采用命令行收发信息改成使用java代码实现,根据上一篇的接着写: 先启动Zookeeper,然后启动Kafka,再创建消息主题: 以上三步我就不重复了,不会的看上一篇即可 maven依赖 <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka-clients<
Kafka消息系统基础知识索引
一些观念的修正 从 0.9 版本开始,Kafka 的标语已经从“一个高吞吐量,分布式的消息系统”改为"一个分布式流平台". Kafka不仅仅是一个队列,而且是一个存储,有超强的堆积能力. Kafka不仅用在吞吐量高的大数据场景,也可以用在有事务要求的业务系统上,但性能较低. Kafka不是Topic越多越好,由于其设计原理,在数量达到阈值后,其性能和Topic数量成反比. 引入了消息队列,就等于引入了异步,不管你是出于什么目的.这通常意味着业务流程的改变,甚至产品体验的变更. 消息系统
kafka消息的分发与消费
关于 Topic 和 Partition: Topic: 在 kafka 中,topic 是一个存储消息的逻辑概念,可以认为是一个消息集合.每条消息发送到 kafka 集群的消息都有一个类别.物理上来说,不同的 topic 的消息是分开存储的,每个 topic 可以有多个生产者向它发送消息,也可以有多个消费者去消费其中的消息. Partition: 每个 topic 可以划分多个分区(每个 Topic 至少有一个分区),同一 topic 下的不同分区包含的消息是不同的.每个消息在被添加到分区时,
kafka 消息系统
一.为什么需要消息系统 1.解耦: 允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束. 2.冗余: 消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险.许多消息队列所采用的"插入-获取-删除"范式中,在把一个消息从队列中删除之前,需要你的处理系统明确的指出该消息已经被处理完毕,从而确保你的数据被安全的保存直到你使用完毕. 3.扩展性: 因为消息队列解耦了你的处理过程,所以增大消息入队和处理的频率是很容易的,只要另外增加处理过程即可. 4.
高可用保证消息绝对顺序消费的BROKER设计方案
转自: http://www.infoq.com/cn/articles/high-availability-broker-design?utm_source=tuicool&utm_medium=referral 在要求严格顺序消息的场景下,消息的发送者,BROKER端(BROKER端和消息存储放在一起),消息的消费者都要求按照顺序进行,三者任何一个环节的乱序都会导致消息最终的消费顺序被打乱. 如果为每一个消息维护一个有序的ID,发送和存储消息无序,消费逻辑会变得非常复杂,消费端要对消息进行重
apache kafka消息服务
apache kafka中国社区QQ群:162272557 apache kafka参考 http://kafka.apache.org/documentation.html 消息队列分类: 点对点: 消息生产者生产消息发送到queue中,然后消息消费者从queue中取出并且消费消息.这里要注意: 消息被消费以后,queue中不再有存储,所以消息消费者不可能消费到已经被消费的消息. Queue支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费. 发布/订阅 消息生产者(发布)将消息
spark streaming 接收kafka消息之二 -- 运行在driver端的receiver
先从源码来深入理解一下 DirectKafkaInputDStream 的将 kafka 作为输入流时,如何确保 exactly-once 语义. val stream: InputDStream[(String, String, Long)] = KafkaUtils.createDirectStream [String, String, StringDecoder, StringDecoder, (String, String, Long)]( ssc, kafkaParams, fromO
热门专题
jeecg boot和哪个好
文档显示很多的ESC
关闭macOS动画效果
Visual Studio 导入源码
WPF有数字输入框吗
clover U盘引导文件下载
entity.persist和save
ubuntu查看已经安装库
unigui 自定义 popupmenu 样式
aliplayer添加字幕
服务器时间没时差,js new date() 有时差
iOS 16 获取状态栏高度
asp.net mVC 页面绑定数据跟弹窗传值
postman chrome插件
cdh 的server均衡安装
微信小程序input清空且失去焦点
urule开源版使用
JAVA读取txt文件
win10 关机弹出downloader.exe错误
securecrt时间戳