首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
将词语进行分类的算法
2024-11-02
【NLP】中文分词:原理及分词算法
一.中文分词 词是最小的能够独立活动的有意义的语言成分,英文单词之间是以空格作为自然分界符的,而汉语是以字为基本的书写单位,词语之间没有明显的区分标记,因此,中文词语分析是中文信息处理的基础与关键. Lucene中对中文的处理是基于自动切分的单字切分,或者二元切分.除此之外,还有最大切分(包括向前.向后.以及前后相结合).最少切分.全切分等等. 二. 中文分词技术分类 我们讨论的分词算法可分为三大类: 1.基于词典:基于字典.词库匹配的分词方法:(字符串匹配.机械分词法) 2.基于统计:基于词频
Java过滤敏感词语/词汇---DFA算法
最近网站需要在评论.投稿等地方过滤敏感词汇,于是在网上查找了相关教程,特此整理分享. 关于DFA算法,详细的可以去http://blog.csdn.net/u013378306/article/details/52764955 看看. 在这纪录下如何配合js验证控件validate来使用它: 首先把工具类导入到项目中: package com.test.util; import java.io.BufferedReader; import java.io.File; import java.io
关键字提取算法TF-IDF和TextRank(python3)————实现TF-IDF并jieba中的TF-IDF对比,使用jieba中的实现TextRank
关键词: TF-IDF实现.TextRank.jieba.关键词提取数据来源: 语料数据来自搜狐新闻2012年6月—7月期间国内,国际,体育,社会,娱乐等18个频道的新闻数据 数据处理参考前一篇文章介绍: 介绍了文本关键词提取的原理,tfidf算法和TextRank算法 利用sklearn实现tfidf算法 手动python实现tfidf算法 使用jieba分词的tfidf算法和TextRank提取关键词 1.关键字提取: 关键词抽取就是从文本里面把跟这
KNN算法的简单实现
一 算法原理:已知一个训练样本集,其中每个训练样本都有自己的标记(label),即我们知道样本集中每一个样本数据与所属分类的对应关系.输入没有标记的新数据后,将新数据的每个特征与样本集中的数据对应的特征进行比较,然后提取样本集中特征最相似数据的分类标记.一般的,我们选择样本集中前k个最相似的数据分类标签,其中出现次数最多的分类作为我们新数据的分类标记.简单的说,k_近邻算法采用测量不同特征值之间的距离方法进行分类. 算法优点: 精度高.对异常值不敏感,无数据输入假设. 算法缺点: 由于要将每个
[Python] 应用kNN算法预测豆瓣电影用户的性别
应用kNN算法预测豆瓣电影用户的性别 摘要 本文认为不同性别的人偏好的电影类型会有所不同,因此进行了此实验.利用较为活跃的274位豆瓣用户最近观看的100部电影,对其类型进行统计,以得到的37种电影类型作为属性特征,以用户性别作为标签构建样本集.使用kNN算法构建豆瓣电影用户性别分类器,使用样本中的90%作为训练样本,10%作为测试样本,准确率可以达到81.48%. 实验数据 本次实验所用数据为豆瓣用户标记的看过的电影,选取了274位豆瓣用户最近看过的100部电影.对每个用户的电影类型进行统计.
算法导论——lec 10 图的基本算法及应用
搜索一个图是有序地沿着图的边訪问全部定点, 图的搜索算法能够使我们发现非常多图的结构信息, 图的搜索技术是图算法邻域的核心. 一. 图的两种计算机表示 1. 邻接表: 这样的方法表示稀疏图比較简洁紧凑. typedef struct{ int adjvex;//邻接顶点的位置 struct ArcNode *next; int weight;//边的权重 }ArcNode; typedef struct{ VertexType data; ArcNode *firstarc; }VNode, A
KNN算法介绍
KNN算法全名为k-Nearest Neighbor,就是K最近邻的意思. 算法描述 KNN是一种分类算法,其基本思想是采用测量不同特征值之间的距离方法进行分类. 算法过程如下: 1.准备样本数据集(样本中每个数据都已经分好类,并具有分类标签):2.使用样本数据进行训练:3.输入测试数据A:4.计算A与样本集的每一个数据之间的距离:5.按照距离递增次序排序:6.选取与A距离最小的k个点:7.计算前k个点所在类别的出现频率:8.返回前k个点出现频率最高的类别作为A的预测分类. 主要因素 训练集(或
AI学习---分类算法[K-近邻 + 朴素贝叶斯 + 决策树 + 随机森林 ]
分类算法:对目标值进行分类的算法 1.sklearn转换器(特征工程)和预估器(机器学习) 2.KNN算法(根据邻居确定类别 + 欧氏距离 + k的确定),时间复杂度高,适合小数据 3.模型选择与调优 4.朴素贝叶斯算法(假定特征互独立 + 贝叶斯公式(概率计算) + 拉普拉斯平滑系数),假定独立,对缺失数据不敏感,用于文本分类 5.决策树(找到最高效的决策顺序--信息增益(关键特征=信息熵-条件熵) + 可以可视化) 6.随机森林(bootstarp(又放回
数据挖掘算法学习(八)Adaboost算法
本文不定期更新.原创文章,转载请附上链接http://blog.csdn.net/iemyxie/article/details/40423907 谢谢 Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器).然后把这些弱分类器集合起来.构成一个更强的终于分类器(强分类器).Adaboost算法本身是通过改变数据分布来实现的,它依据每次训练集之中每一个样本的分类是否正确,以及上次的整体分类的准确率,来确定每一个样本的权值. 将改动过权值的新数据集送给下层分类器进
spark 随机森林算法案例实战
随机森林算法 由多个决策树构成的森林,算法分类结果由这些决策树投票得到,决策树在生成的过程当中分别在行方向和列方向上添加随机过程,行方向上构建决策树时采用放回抽样(bootstraping)得到训练数据,列方向上采用无放回随机抽样得到特征子集,并据此得到其最优切分点,这便是随机森林算法的基本原理.图 3 给出了随机森林算法分类原理,从图中可以看到,随机森林是一个组合模型,内部仍然是基于决策树,同单一的决策树分类不同的是,随机森林通过多个决策树投票结果进行分类,算法不容易出现过度拟合问题. 图 3
分类算法简介 分类: B10_计算机基础 2015-03-09 11:08 257人阅读 评论(0) 收藏
一.决策树 决策树是用于分类和预测的主要技术之一,决策树学习是以实例为基础的归纳学习算法,它着眼于从一组无次序.无规则的实例中 推理出以决策树表示的分类规则.构造决策树的目的是找出属性和类别间的关系,用它来预测将来未知类别的记录的类别.它采用自顶向下的递归方式,在决策树的 内部节点进行属性的比较,并根据不同属性值判断从该节点向下的分支,在决策树的叶节点得到结论. 主要的决策树算法有ID3.C4.5(C5.0).CART.PUBLIC.SLIQ和SPRINT算法等.它们在选择测试属性采用的技术.生
随机森林算法原理及OpenCV应用
随机森林算法是机器学习.计算机视觉等领域内应用较为广泛的一个算法.它不仅可以用来做分类(包括二分类和多分类),也可用来做回归预测,也可以作为一种数据降维的手段. 在随机森林中,将生成很多的决策树,并不像在决策树那样只生成唯一的树.随机森林在变量(列)的使用和数据(行)的使用上进行随机化,生成很多分类树,每个树都是一个独立的判断分支,互相之间彼此独立.随机森林在运算量没有显著提高的前提下提高了预测精度,并且对多元公线性不敏感,判断结果缺失数据和非平衡的数据比较稳健,可以很好地预测多达几千个解释变量
跟我读CVPR 2022论文:基于场景文字知识挖掘的细粒度图像识别算法
摘要:本文通过场景文字从人类知识库(Wikipedia)中挖掘其背后丰富的上下文语义信息,并结合视觉信息来共同推理图像内容. 本文分享自华为云社区<[CVPR 2022] 基于场景文字知识挖掘的细粒度图像识别算法>,作者: 谷雨润一麦. 本文简要介绍CVPR 2022录用的论文"Knowledge Mining with Scene Text for Fine-Grained Recognition"的主要工作.该论文旨在利用场景文本的线索来提升细粒度图像识别的性能.本文通
Stanford大学机器学习公开课(六):朴素贝叶斯多项式模型、神经网络、SVM初步
(一)朴素贝叶斯多项式事件模型 在上篇笔记中,那个最基本的NB模型被称为多元伯努利事件模型(Multivariate Bernoulli Event Model,以下简称 NB-MBEM).该模型有多种扩展,一种是在上一篇笔记中已经提到的每个分量的多值化,即将p(xi|y)由伯努利分布扩展到多项式分布:还有一种在上一篇笔记中也已经提到,即将连续变量值离散化.本文将要介绍一种与多元伯努利事件模型有较大区别的NB模型,即多项式事件模型(Multinomial Event Model,一下简称NB-M
朴素贝叶斯文本分类实现 python cherry分类器
贝叶斯模型在机器学习以及人工智能中都有出现,cherry分类器使用了朴素贝叶斯模型算法,经过简单的优化,使用1000个训练数据就能得到97.5%的准确率.虽然现在主流的框架都带有朴素贝叶斯模型算法,大多数开发者只需要直接调用api就能使用.但是在实际业务中,面对不同的数据集,必须了解算法的原理,实现以及懂得对结果进行分析,才能达到高准确率. cherry分类器 关键字过滤 贝叶斯模型 数学推导 贝叶斯模型实现 测试 统计分析 总结 cherry分类器 基础术语: cherry分类器默认支持中英文
Text-CNN 文本分类
1.简介 TextCNN 是利用卷积神经网络对文本进行分类的算法,由 Yoon Kim 在 “Convolutional Neural Networks for Sentence Classification” 一文 (见参考[1]) 中提出. 是2014年的算法. 图1-1 参考[1] 中的论文配图 图1-2 网络盗图 合理性: 深度学习模型在计算机视觉与语音识别方面取得了卓越的成就. 在 NLP 也是可以的. 卷积具有局部特征提取的功能, 所以可用 CNN 来提取句子中类似 n-gram 的
万字总结Keras深度学习中文文本分类
摘要:文章将详细讲解Keras实现经典的深度学习文本分类算法,包括LSTM.BiLSTM.BiLSTM+Attention和CNN.TextCNN. 本文分享自华为云社区<Keras深度学习中文文本分类万字总结(CNN.TextCNN.BiLSTM.注意力)>,作者: eastmount. 一.文本分类概述 文本分类旨在对文本集按照一定的分类体系或标准进行自动分类标记,属于一种基于分类体系的自动分类.文本分类最早可以追溯到上世纪50年代,那时主要通过专家定义规则来进行文本分类:80年代出现了利
Adaboost 2
本文不定期更新.原创文章,转载请注明出处,谢谢. Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器).Adaboost算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值.将修改过权值的新数据集送给下层分类器进行训练,最后将每次得到的分类器最后融合起来,作为最后的决策分类器. 算法概述 1.先通过对N个训练样本的学习得
Spark朴素贝叶斯(naiveBayes)
朴素贝叶斯(Naïve Bayes) 介绍 Byesian算法是统计学的分类方法,它是一种利用概率统计知识进行分类的算法.在许多场合,朴素贝叶斯分类算法可以与决策树和神经网络分类算法想媲美,该算法能运用到大型数据库中,且方法简单,分类准确率高,速度快,这个算法是从贝叶斯定理的基础上发展而来的,贝叶斯定理假设不同属性值之间是不相关联的.但是现实说中的很多时候,这种假设是不成立的,从而导致该算法的准确性会有所下降. 运用场景 1.医生对病人进行诊断就是一个典型的分类过程,任何一个医生都无法直接看到病
haar-like特征(转载)
浅析人脸检测之Haar分类器方法 [补充] 这是我时隔差不多两年后, 回来编辑这篇文章加的这段补充, 说实话看到这么多评论很是惊讶, 有很多评论不是我不想回复, 真的是时间久了, 很多细节我都忘记了, 无力回复, 非常抱歉. 我本人并非做CV的, 这两年也都没有再接触CV, 作为一个本科毕业的苦逼码工, 很多理论基础都不扎实, 回顾这篇文章的时候, 我知道其实有很多地方都是写的模棱两可, 加这个补充, 也是希望看这篇文章同学要带着批判的眼光来看, 要想透彻的理解算法, 一是要看透算法原作者的
浅析人脸检测之Haar分类器方法
一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来. 目前的人脸检测方法主要有两大类:基于知识和基于统计. "基于知识的方法主要利用先验知识将人脸看作器官特征的组合,根据眼睛.眉毛.嘴巴.鼻子等器官的特征以及相互之间的几何位置关系来检测人脸.基于统计的方法则将人脸看作一个整体的模式--二维像素矩阵,从统计的观点通过大量人脸图像样本构造人脸模式
热门专题
linux如何添权限
怎么查看U盘有没有USB3.0驱动
github修改了host访问速度慢
查看gradle路径
发布servlet的两种方法
BusyBoxftpget命令用法
对获取数据进行整理成标准二维表或一维表
vs统一设置高级保存选项为utf-8
to_excel 覆盖相同名字文件
linux ffmpeg 安装
python的idle提供了哪两种运行方式
jfGrid 力软 隐藏列
树莓派使用A4988
vmware清理磁盘 损坏
centos7源码安装zabbix6服务端客户端
子目录设置伪静态页面加载不出来
Python 调用函数后返回函数内存地址
source命令自动执行
ubuntu待机后无法唤醒
98配列键盘没有home键