首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
循环神经网络 经典原图
2024-10-17
循环神经网络(Recurrent Neural Network,RNN)
为什么使用序列模型(sequence model)?标准的全连接神经网络(fully connected neural network)处理序列会有两个问题:1)全连接神经网络输入层和输出层长度固定,而不同序列的输入.输出可能有不同的长度,选择最大长度并对短序列进行填充(pad)不是一种很好的方式:2)全连接神经网络同一层的节点之间是无连接的,当需要用到序列之前时刻的信息时,全连接神经网络无法办到,一个序列的不同位置之间无法共享特征.而循环神经网络(Recurrent Neural Networ
Recurrent Neural Networks(RNN) 循环神经网络初探
1. 针对机器学习/深度神经网络“记忆能力”的讨论 0x1:数据规律的本质是能代表此类数据的通用模式 - 数据挖掘的本质是在进行模式提取 数据的本质是存储信息的介质,而模式(pattern)是信息的一种表现形式.在一个数据集中,模式有很多不同的表现形式,不管是在传统的机器学习训练的过程,还是是深度学习的训练过程,本质上都是在进行模式提取. 而从信息论的角度来看,模式提取也可以理解为一种信息压缩过程,通过将信息从一种形式压缩为另一种形式.压缩的过程不可避免会造成信息丢失. 笔者这里列举几种典型的体
Recurrent Neural Network(循环神经网络)
Reference: Alex Graves的[Supervised Sequence Labelling with RecurrentNeural Networks] Alex是RNN最著名变种,LSTM发明者Jürgen Schmidhuber的高徒,现加入University of Toronto,拜师Hinton. 统计语言模型与序列学习 1.1 基于频数统计的语言模型 NLP领域最著名的语言模型莫过于N-Gram. 它基于马尔可夫假设,当然,这是一个2-Gram(Bi-Gram)模
循环神经网络(RNN, Recurrent Neural Networks)介绍(转载)
循环神经网络(RNN, Recurrent Neural Networks)介绍 这篇文章很多内容是参考:http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/,在这篇文章中,加入了一些新的内容与一些自己的理解. 循环神经网络(Recurrent Neural Networks,RNNs)已经在众多自然语言处理(Natural Language Proce
CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?
https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?以及他们的主要用途是什么?只知道CNN是局部感受和参数共享,比较适合用于图像这方面.刚入门的小白真心 个人觉得CNN.RNN和DNN不能放在一起比较.DNN是一个大类,CNN是一个典型的空间上深度的神经网络,RNN是在
循环神经网络之LSTM和GRU
看了一些LSTM的博客,都推荐看colah写的博客<Understanding LSTM Networks> 来学习LSTM,我也找来看了,写得还是比较好懂的,它把LSTM的工作流程从输入到输出整个撸了一遍,清晰地展示了整个流程,不足之处就是那个语言模型的例子不知道到底在表达什么. But! 我觉得邱锡鹏老师的书写得更好!我又要开始推荐这本免费的书了:<神经网络与深度学习>.这本书第六章循环神经网络的LSTM部分,阐述了为什么要引入门控机制.LSTM的工作流程.LSTM的数学表达式
循环神经网络(Recurrent Neural Networks, RNN)介绍
目录 1 什么是RNNs 2 RNNs能干什么 2.1 语言模型与文本生成Language Modeling and Generating Text 2.2 机器翻译Machine Translation 2.3 语音识别Speech Recognition 2.4 图像描述生成 Generating Image Descriptions 3 如何训练RNNs 4 RNNs扩展和改进模型 4.1 Simple RNNsSRNs2 4.2 Bidirectional RNNs3 4.3 DeepB
机器学习与Tensorflow(5)——循环神经网络、长短时记忆网络
1.循环神经网络的标准模型 前馈神经网络能够用来建立数据之间的映射关系,但是不能用来分析过去信号的时间依赖关系,而且要求输入样本的长度固定 循环神经网络是一种在前馈神经网络中增加了分亏链接的神经网络,能够产生对过去数据的记忆状态,所以可以用于对序列数据的处理,并建立不同时段数据之间的依赖关系 循环神经网络是一类允许节点连接成有向环的人工神经网络.如下图: 2.循环神经网络与递归神经网络 从广义上说,递归神经网络可以分为结构递归神经网络和时间递归神经网络 从狭义上说,递归神经网络可以通常就是指结构
循环神经网络(RNN)
1. 场景与应用 在循环神经网络可以用于文本生成.机器翻译还有看图描述等,在这些场景中很多都出现了RNN的身影. 2. RNN的作用 传统的神经网络DNN或者CNN网络他们的输入和输出都是独立的.对于这些模型输入的数据跟输出的数据大多是关联不太紧密的场景,但是有些场景输入的数据对后面输入的数据是有关系的,或者说后面的数据跟前面的数据是有关联的.例如,对于文本类的数据,当输入某句话的时候,刚开始输入第一个字的时候,再输入这句话的第二个字时候,其实第二个字要输入什么字其实是跟第一个字是有
循环神经网络 RNN
随着科学技术的发展以及硬件计算能力的大幅提升,人工智能已经从几十年的幕后工作一下子跃入人们眼帘.人工智能的背后源自于大数据.高性能的硬件与优秀的算法的支持.2016年,深度学习已成为Google搜索的热词,随着最近一两年的围棋人机大战中,阿法狗完胜世界冠军后,人们感觉到再也无法抵挡住AI的车轮的快速驶来.在2017年这一年中,AI已经突破天际,相关产品也出现在人们的生活中,比如智能机器人.无人驾驶以及语音搜索等.最近,世界智能大会在天津举办成功,大会上许多业内行家及企业家发表自己对未来的看法,可
TensorFlow学习笔记(六)循环神经网络
一.循环神经网络简介 循环神经网络的主要用途是处理和预测序列数据.循环神经网络刻画了一个序列当前的输出与之前信息的关系.从网络结构上,循环神经网络会记忆之前的信息,并利用之前的信息影响后面节点的输出. 下图展示了一个典型的循环神经网络. 循环神经网络的一个重要的概念就是时刻.上图中循环神经网络的主体结构A的输入除了来自输入层的Xt,还有一个自身当前时刻的状态St. 在每一个时刻,A会读取t时刻的输入Xt,并且得到一个输出Ht.同时还会得到一个当前时刻的状态St,传递给下一时刻t+1. 因此,循环
大话循环神经网络(RNN)
在上一篇文章中,介绍了 卷积神经网络(CNN)的算法原理,CNN在图像识别中有着强大.广泛的应用,但有一些场景用CNN却无法得到有效地解决,例如: 语音识别,要按顺序处理每一帧的声音信息,有些结果需要根据上下文进行识别: 自然语言处理,要依次读取各个单词,识别某段文字的语义 这些场景都有一个特点,就是都与时间序列有关,且输入的序列数据长度是不固定的. 而经典的人工神经网络.深度神经网络(DNN),甚至卷积神经网络(CNN),一是输入的数据维度相同,另外是各个输入之间是独立的,每层神经元的信号
循环神经网络(RNN, Recurrent Neural Networks)介绍
原文地址: http://blog.csdn.net/heyongluoyao8/article/details/48636251# 循环神经网络(RNN, Recurrent Neural Networks)介绍 这篇文章很多内容是参考:http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/,在这篇文章中,加入了一些新的内容与一些自己的理解. 循环神经网
深度学习四从循环神经网络入手学习LSTM及GRU
循环神经网络 简介 循环神经网络(Recurrent Neural Networks, RNN) 是一类用于处理序列数据的神经网络.之前的说的卷积神经网络是专门用于处理网格化数据(例如一个图像)的神经网络,而循环神经网络专门用于处理序列数据(例如\(x^{(1)},x^{(2)},···,x^{(T)},\))的神经网络. 应用场景 一些要求处理序列输入的任务,例如: 语音识别(speech recognition) 时间序列预测(time series prediction) 机器翻译(mac
MindSpore循环神经网络
MindSpore循环神经网络 一. 神经网络的组成 神经元模型:首先简单的了解以下构成神经网络的最基础单元:神经元.每个神经元与其它神经元相连,处于激活状态时,就会向相连的神经元发送相应信号.从而改变其它神经元的状态.如果某个神经元的信号超过某个阈值.那么将被激活,再接着发送给其它神经元.如图1所示: 图1:神经元结构 神经网络的任何神经元都可以表述为上述的形式.该单元主要由输入变量.带权参数和激活函数组成.首先是x1,x2,x3带权重的输入变量,该变量的取值来自前面一层所有变量与权重的乘积,
Recurrent Neural Network系列1--RNN(循环神经网络)概述
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS TUTORIAL, PART 1 – INTRODUCTION TO RNNS . Recurrent Neural Networks(RNNS) ,循环神经网络,是一个流行的模型,已经在许多NLP任务上显示出巨大的潜力.尽管它最近很流行,但是我发现能够解释RNN如何工作,以及如何实现RNN的资料很少
循环神经网络(RNN)模型与前向反向传播算法
在前面我们讲到了DNN,以及DNN的特例CNN的模型和前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联关系.今天我们就讨论另一类输出和模型间有反馈的神经网络:循环神经网络(Recurrent Neural Networks ,以下简称RNN),它广泛的用于自然语言处理中的语音识别,手写书别以及机器翻译等领域. 1. RNN概述 在前面讲到的DNN和CNN中,训练样本的输入和输出是比较的确定的.但是有一类问题DNN和CNN不好解决,就是训练样本输入是连续的序列,且序列的长短不
循环神经网络RNN公式推导走读
0语言模型-N-Gram 语言模型就是给定句子前面部分,预测后面缺失部分 eg.我昨天上学迟到了,老师批评了____. N-Gram模型: ,对一句话切词 我 昨天 上学 迟到 了 ,老师 批评 了 ____. 2-N-Gram 会在语料库中找 了 后面最可能的词: 3-N-Gram 会在预料库中找 批评了 后面最可能的词: 4-N-Gram 的内存耗费就非常巨大了(语料库中保存所有的四个词的预料组合). 1.1单向循环神经网络 一个单隐层结构示意图:
第十四章——循环神经网络(Recurrent Neural Networks)(第一部分)
由于本章过长,分为两个部分,这是第一部分. 这几年提到RNN,一般指Recurrent Neural Networks,至于翻译成循环神经网络还是递归神经网络都可以.wiki上面把Recurrent Neural Networks叫做时间递归神经网络,与之对应的还有一个结构递归神经网络(recursive neural network).本文讨论的是前者. RNN是一种可以预测未来(在某种程度上)的神经网络,可以用来分析时间序列数据(比如分析股价,预测买入点和卖出点).在自动驾驶中,可以预测路线
第十四章——循环神经网络(Recurrent Neural Networks)(第二部分)
本章共两部分,这是第二部分: 第十四章--循环神经网络(Recurrent Neural Networks)(第一部分) 第十四章--循环神经网络(Recurrent Neural Networks)(第二部分) 14.4 深度RNN 堆叠多层cell是很常见的,如图14-12所示,这就是一个深度RNN. 图14-12 深度RNN(左),随时间展开(右) 在TensorFlow中实现深度RNN,需要创建多个cell并将它们堆叠到一个MultiRNNCell中.下面的代码创建了三个完全相同的cel
热门专题
navicat premium sequences 同步
定义函数g(n)为n最大的奇数因子
navicat15,linux,自动备份
Huntertik 破解
华为云 和华为云poc
sql 查询 分组中 字段重复次数
idea移动到另一台电脑上
cumprod函数什么意思
echarts 点落在轴上
react Form.create 事件定义
idea添加文件找不到接口文件interface
springboot activemq延迟队列
asp.net mvc 记住密码
python人狗大战编程
android ota制作
SSDT.aml文件
oracle环境配置
latex state 加粗
虚拟机安装centos7检测不到本地磁盘
chrome切换phantomjs