矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b * A B = a*A+b*C a*c+b*D c d C D = c*A+d*C c*A+d*C 上代码 struct matrix { ll a[maxn][maxn]; }; matrix matrix_mul(matrix x,matrix y) { matrix temp; ;i<=n;i++) ;j<=n;j++) { tem
RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近.时间序列分析.数据分类.模式识别.信息处理.图像处理.系统建模.控制和故障诊断等. 输入X是个m维的向量,样本容量为P,P>m.可以看到输入数据点Xp是径向基函数φp的中心.隐藏层的作用是把向量从低维m映射到高维P,低维线性不可分的情况到高维就线性可分了. RBF Network 通常只有三层.输入层.中间层计算输入 x 矢量与样本矢量 c 欧式距