转载注明出处:http://blog.csdn.net/wdq347/article/details/9001005 (修正了一些错误,并自己重写了代码) 最长公共子序列(LCS)最常见的算法是时间复杂度为O(n^2)的动态规划(DP)算法,但在James W. Hunt和Thomas G. Szymansky 的论文"A Fast Algorithm for Computing Longest Common Subsequence"中,给出了O(nlogn)下限的一种算法. 定理:设
Given two strings, find the longest common subsequence (LCS). 最长公共子序列 Your code should return the length of LCS. Clarification What's the definition of Longest Common Subsequence? https://en.wikipedia.org/wiki/Longest_common_subsequence_problem h
POJ 1458 Common Subsequence(LCS最长公共子序列)解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730#problem/F 题目: Common Subsequence Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 43388 Accepted: 17613 Description A subsequen
Longest Common Substring Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 37 Accepted Submission(s): 28 Problem Description Given two strings, you have to tell the length of the Longest Common Su
一.最长公共子序列问题(LCS问题) 给定两个字符串A和B,长度分别为m和n,要求找出它们最长的公共子序列,并返回其长度.例如: A = "HelloWorld" B = "loop" 则A与B的最长公共子序列为 "loo",返回的长度为3.此处只给出动态规划的解法:定义子问题dp[i][j]为字符串A的第一个字符到第 i 个字符串和字符串B的第一个字符到第 j 个字符的最长公共子序列,如A为“app”,B为“apple”,dp[2][3]