转载注明出处:http://blog.csdn.net/wdq347/article/details/9001005 (修正了一些错误,并自己重写了代码) 最长公共子序列(LCS)最常见的算法是时间复杂度为O(n^2)的动态规划(DP)算法,但在James W. Hunt和Thomas G. Szymansky 的论文"A Fast Algorithm for Computing Longest Common Subsequence"中,给出了O(nlogn)下限的一种算法. 定理:设
最长上升子序列,问题定义:http://blog.csdn.net/chenwenshi/article/details/6027086 代码: public static void getData( char[] L ) { int len = L.length; int[] f = new int[len]; String[] res = new String[len]; ; i < len; i++ ) { f[i] = ; res[i] = "" + L[i]; ; j
先要搞明白:最长公共子串和最长公共子序列的区别. 最长公共子串(Longest Common Substirng):连续 最长公共子序列(Longest Common Subsequence,LCS):不必连续 实在是汗颜,网上做一道题半天没进展: 给定一个字符串s,你可以从中删除一些字符,使得剩下的串是一个回文串.如何删除才能使得回文串最长呢?输出需要删除的字符个数. 首先是自己大致上能明白应该用动态规划的思想否则算法复杂度必然过大.可是对于回文串很难找到其状态和状态转移方程,换句话