该题还是考杨辉三角计算,只不过最后每一行都放入List集合中,然后返回,直接看代码: public static List<List<Integer>> generate(int row){ List<List<Integer>> list = new ArrayList<List<Integer>>(); int[][] arr = new int[row][row]; for(int j = 0;j<row;j++) { L
import java.util.Scanner;public class yanghui{ public static void main(String[] args){ Scanner sc=new Scanner(System.in); System.out.println("\nPlease enter the number of Yang Hui triangle rows:"); int n=sc.nextInt(); int [][]a=new int [n][]
//import java.util.Arrays; //包含Arrays //import java.util.Random; public class HelloWorld { public static void main(String[] args){ // Scanner s = new Scanner(System.in); // System.out.println("请输入一个数字"); // int num = s.nextInt(); YanghuiSanjiao(
Given a non-negative integer numRows, generate the first numRows of Pascal's triangle. In Pascal's triangle, each number is the sum of the two numbers directly above it. Example: Input: 5 Output: [ [1], [1,1], [1,2,1], [1,3,3,1], [1,4,6,4,1] ] 给定一个非负
Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle. Note that the row index starts from 0. In Pascal's triangle, each number is the sum of the two numbers directly above it. Example: Input: 3 Output: [1,3,3,1
Pascal's triangle (1过) Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5, Return [ [1], [1,1], [1,2,1], [1,3,3,1], [1,4,6,4,1] ] 给定一个非负整数 numRows,生成杨辉三角的前 numRows 行. 在杨辉三角中,每个数是它左上方和右上方的数的和. 示例: 输入: 5 输出:
给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行. 在杨辉三角中,每个数是它左上方和右上方的数的和. 示例: 输入: 3 输出: [1,3,3,1] 进阶: 你可以优化你的算法到 O(k) 空间复杂度吗? class Solution { public List<Integer> getRow(int rowIndex) { List<Integer> res = new ArrayList<Integer>(); for (int i = 0;i&l