用Python求均值与方差,可以自己写,也可以借助于numpy,不过到底哪个快一点呢? 我做了个实验,首先生成9百万个样本: nlist=range(0,9000000) nlist=[float(i)/1000000 for i in nlist] N=len(nlist) 第二行是为了让样本小一点,否则从1加到9百万会溢出的. 自己实现,遍历数组来求均值方差: sum1=0.0 sum2=0.0 for i in range(N): sum1+=nlist[i] sum2+=nlist[i]
__author__ = 'dell' import Pmf import matplotlib.pyplot as pyplot pmf = Pmf.MakePmfFromList([1, 2, 2, 3, 5]) print 'Mean by Pmf ', pmf.Mean() print 'Var by Pmf ', pmf.Var() def PmfMean(pmf): t = [x * v for x, v in pmf.Items()] res = sum(t) return res
一.nn.Embedding.weight初始化分布 nn.Embedding.weight随机初始化方式是标准正态分布 ,即均值$\mu=0$,方差$\sigma=1$的正态分布. 论据1——查看源代码 ## class Embedding具体实现(在此只展示部分代码) import torch from torch.nn.parameter import Parameter from .module import Module from .. import functional as F
近期一直有点小忙,可是不知道在瞎忙什么,最终有时间把Beta分布的整理弄完. 以下的内容.夹杂着英文和中文,呵呵- Beta Distribution Beta Distribution Definition: The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It has the probability distribu