首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
正态近似法和t分布法
2024-08-25
T 分布(近似标准正态分布)
1.1 定义 定义:假设X服从标准正态分布N(0,1),Y服从卡方分布,那么的分布称为自由度为n的t分布,记为. T分布密度函数其中,Gam(x)为伽马函数. 可用于两组独立计量资料的假设检验. 由于在实际工作中,往往σ(总体方差)是未知的,常用s(样本方差)作为σ总体方差的估计值,为了与u变换(正态化变换)区别,称为t变换,统计量t 值的分布称为t分布.[u分布也叫标准正态分布] u变换:[(X-μ)/σ]转化成标准正态变量u,以使原来各种形态的正态分布都转换为μ=0,σ=1的标准正
数据分布转换:非正态 -> 正态
来源:丁香园论坛:SPSS上的把非正态分布数据转换为正态分布数据 一楼 可以应用变量变换的方法,将不服从正态分布的资料转化为非正态分布或近似正态分布.常用的变量变换方法有对数变换.平方根变换.倒数变换.平方根反正玄变换等,应根据资料性质选择适当的变量变换方法. 对数变换 即将原始数据X的对数值作为新的分布数据: X'=lgX 当原始数据中有小值及零时,亦可取X'=lg(X+1) 还可根据需要选用X'=lg(X+k)或X'=lg(k-X) 对数变换常用于(1)使服从对数正态分布的数据正态化.如环境
正态QQ图的原理
code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && document.readyState && document.readyState === "complete") { window.setTimeout(function() { hljs.initHighlighting(); }, 0);} .main-container
R 正态性检验:正态概率图
检验模型是否满足正态性假设的方法: 1.正态概率图 这是我编写的画正态概率图的函数: #绘制正态概率图 plot_ZP = function(ti) #输入外部学生化残差 { n = length(ti) order = rank(ti) #按升序排列,t(i)是第order个 Pi = (order-1/2)/n #累积概率 plot(ti,Pi,xlab = "学生化残差",ylab = "百分比") #画正态概率图 #添加回归线 fm = lm(Pi~ti)
在opencv3中实现机器学习之:利用正态贝叶斯分类
opencv3.0版本中,实现正态贝叶斯分类器(Normal Bayes Classifier)分类实例 #include "stdafx.h" #include "opencv2/opencv.hpp" using namespace cv; using namespace cv::ml; int main(int, char**) { , height = ; Mat image = Mat::zeros(height, width, CV_8UC3); //创
【R】正态检验与R语言
正态检验与R语言 1.Kolmogorov–Smirnov test 统计学里, Kolmogorov–Smirnov 检验(亦称:K–S 检验)是用来检验数据是否符合某种分布的一种非参数检验,通过比较一个频率分布f(x)与理论分布g(x)或者两个观测值分布来判断是否符合检验假设.其原假设H0:两个数据分布一致或者数据符合理论分布.拒绝域构造为:D=max| f(x)- g(x)|,当实际观测值D>D(n,α)则拒绝H0,否则则接受H0假设.由于KS检验不需要知道数据的分布情况,在小样本的统计分
【译文】利用STAN做贝叶斯回归分析:Part 2 非正态回归
[译文]利用STAN做贝叶斯回归分析:Part 2 非正态回归 作者 Lionel Hertzogn 前一篇文章已经介绍了怎样在R中调用STAN对正态数据进行贝叶斯回归.本文则将利用三个样例来演示怎样在R中利用STAN拟合非正态模型. 三个样例各自是negative binomial回归(过离散的泊松数据).gamma回归(右偏的连续数据)和beta-binomial回归(过离散的二项数据). 相关的STAN代码及一些说明会贴在本文末尾. 负二项回归 泊松分布经常使用于计数数据建模,它如果了数据
R-2 - 正态分布-中心极限-置信区间-正态假设检验
本节内容 1:样本估计总体均值跟标准差,以及标准误 2:中心极限定理 3:如何查看数据是否是正态分布QQ图 4:置信区间的理解跟案例 5:假设检验 参考文章: 假设检验的学习和理解 一.样本估计总体均值跟标准差 多组抽样 估计总体均值 = mean(多组的各个均值) 估计总体标准差 = sd(多组的各个标准差) 标准误 = sd(多组的各个均值) 一组抽样 估计总体均值 = mean(一组的均值) 估计总体标准差 = sd(一组的标准差) 标准误 = 估计的标准差/ sqrt(n) 标准误: 真
c# 画正态分布图
/// <summary> /// 提供正态分布的数据和图片 /// </summary> public class StandardDistribution { /// <summary> /// 样本数据 /// </summary> public List<double> Xs { get; private set; } public StandardDistribution(List<double> Xs) { this.Xs
估计量|估计值|置信度|置信水平|非正态的小样本|t分布|大样本抽样分布|总体方差|
5 估计量和估计值是什么? 估计量不是估计出来的量,是用于估计的量. 估计量:用于估计总体参数的随机变量,一般为样本统计量.如样本均值.样本比例.样本方差等.例如:样本均值就是总体均值的一个估计量. 估计值就是估计出来的数值. 可以在点估计上使用样本方差估计总体方差吗? 可以,是无偏的. 置信度与置信水平的关系? 置信度是0.05,置信水平是0.95 来自非正态的小样本如何处理? 按照样本原生分布处理 两总体均值之差两种方差情况下的自由度? 使用t分布的动机是什么? 抽样分布正态,但是总体方差未
SciPy - 正态性 与 KS 检验
假设检验的基本思想 若对总体的某个假设是真实的,那么不利于或者不能支持这一假设的事件A在一次试验中是几乎不可能发生的:如果事件A真的发生了,则有理由怀疑这一假设的真实性,从而拒绝该假设: 假设检验实质上是对原假设是否正确进行检验,因此检验过程中要使原假设得到维护,使之不轻易被拒绝:否定原假设必须有充分的理由.同时,当原假设被接受时,也只能认为否定该假设的根据不充分,而不是认为它绝对正确 ks 检验 ks 检验分为 单样本 和两样本 检验: 单样本检验 用于 检验 一个数据的观测分布 是否符合 某
机器学习:正态方程 python实现
目录 前言 一.算法介绍 二.核心算法 1. 公式 2.python实现 总结 前言 使用python简单实现机器学习中正态方程算法. 一.算法介绍 与梯度下降算法相比,正态方程同样用于解决最小化代价函数J,不同的是,梯度下降算法通过迭代计算获得最小J的theta值,而正态方程则是通过直接对J进行求导,直接获得满足条件的theta值. 二.核心算法 1. 公式 正态方程通过矩阵运算求得theta. X为数据集中x的矩阵,y为数据集中y的矩阵. 2.python实现 import numpy as
对抗生成网络-图像卷积-mnist数据生成(代码) 1.tf.layers.conv2d(卷积操作) 2.tf.layers.conv2d_transpose(反卷积操作) 3.tf.layers.batch_normalize(归一化操作) 4.tf.maximum(用于lrelu) 5.tf.train_variable(训练中所有参数) 6.np.random.uniform(生成正态数据
1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的个数,kernel_size卷积核的大小,stride步长,padding是否补零 2. tf.layers.conv2d_transpose(input, filter, kernel_size, stride, padding) # 进行反卷积操作 参数说明:input输入数据, filter特
c/c++/c# 快速计算 Cumulative Normal Distribution 正态累积函数CDF
链接: http://stackoverflow.com/questions/2328258/cumulative-normal-distribution-function-in-c-c http://www.johndcook.com/blog/cpp_phi/ 个人使用的是如下的代码: static double CND(double d) { const double A1 = 0.31938153; const double A2 = -0.356563782; const double
OpenCV Machine Learning 之 正态贝叶斯分类器 (Normal Bayes Classifier)
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/zhjm07054115/article/details/27631913
Excel 绘制正态概率图-正态性检验
rssi pdf 单双峰正态发布 与 定位
6、基于highcharts实现的线性拟合,计算部分在java中实现,画的是正态概率图
1.坐标点类 package cn.test.domain; public class Point { double x; double y; public Point(){ } public Point(double x, double y) { super(); this.x = x; this.y = y; } public double getX() { return x; } public void setX(double x) { this.x = x; } public doubl
frequentism-and-bayesianism-chs
frequentism-and-bayesianism-chs 频率主义和贝叶斯主义——一个实用的介绍 此notebook最初出现在博客Pythonic Perambulations的文章.BSD licensed. 这个系列共4个部分:中文版Part I Part II Part III Part IV,英文版Part I Part II Part III Part IV 科学工作者学习统计学的第一件事儿是要知道有两种不同的方法论:频率主义和贝叶斯主义.尽管这点很重要,但很多科学工作者从来
用Python学分析 - 二项分布
二项分布(Binomial Distribution)对Bernoulli试验序列的n次序列,结局A出现的次数x的概率分布服从二项分布- 两分类变量并非一定会服从二项分布- 模拟伯努利试验中n次独立的重复,每次试验成功的概率为pi 特征值 - 均值(数学期望)和方差: - 不同的值,二项式分布有着不同的形态和偏度值 - pi值越大,呈负偏度:pi值越小,呈正偏度 - 当 pi = 0.5时,分布是对称的 - 当 n * pi 与 n * (1-pi) >= 5 时,样本比例p的抽样分布趋向于正态
【数据分析 R语言实战】学习笔记 第六章 参数估计与R实现(下)
6.3两正态总体的区间估计 (1)两个总体的方差已知 在R中编写计算置信区间的函数twosample.ci()如下,输入参数为样本x, y,置信度α和两个样本的标准差. > twosample.ci=function(x,y,alpha,sigma1,sigma2){ + n1=length(x);n2=length(y) + xbar=mean(x)-mean(y) + z=qnorm(1-alpha/2)*sqrt(sigma1^2/n1+sigma2^2/n2) + c(xbar-z,xb
热门专题
mac 压缩包 破解密码
matplotlib 散点图和回归线
自动化测试之绕过验证码登录
audio 播放多个mp3
leetcode 518 零钱
ac自动机 java
msvsmon.exe 32位版本不能用于
async异步函数顺序执行
大规模openstack
arm9 怎么关闭i-cache
链路聚合如何固定IP
blazor 多页签
identityserver4 返回格式
Tessercat 安装
htmljquery官网
csdn 免积分下载
c 标识符可以intel吗
java源文件编译后用什么命令打开
MATLAB 同一个脚本中的函数调用
fopen读取csv文件中的数据