摘要 这篇文章提供了一个关于递归神经网络中某些概念的指南.与前馈网络不同,RNN可能非常敏感,并且适合于过去的输入(be adapted to past inputs).反向传播学习(backpropagation learning)是为了前馈网络而描述,并进行调整来满足我们的建模需要,并且推广到递归网络.这篇简要的文章的目的是搭建一个应用和理解递归神经元网络的图景(scene). 1.简介 广为人知的是,给定了一个隐藏节点的集合(可能非常大),传统的前馈网络可以用来近似任何空间受限的有限函数.
接上篇. 在(一)和(二)中,程序的体系是Net,Propagation,Trainer,Learner,DataProvider.这篇重构这个体系. Net 首先是Net,在上篇重新定义了激活函数和误差函数后,内容大致是这样的: List<DoubleMatrix> weights = new ArrayList<DoubleMatrix>(); List<DoubleMatrix> bs = new ArrayList<>(); List<Acti
根据前篇博文<神经网络之后向传播算法>,现在用java实现一个bp神经网络.矩阵运算采用jblas库,然后逐渐增加功能,支持并行计算,然后支持输入向量调整,最后支持L-BFGS学习算法. 上帝说,要有神经网络,于是,便有了一个神经网络.上帝还说,神经网络要有节点,权重,激活函数,输出函数,目标函数,然后也许还要有一个准确率函数,于是,神经网络完成了: public class Net { List<DoubleMatrix> weights = new ArrayList<D