首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
红黑树高度算外部节点吗
2024-11-10
高级搜索树-红黑树(RBTree)解析
目录 红黑树的定义 节点与树的定义 旋转操作 插入操作 情况1:p的兄弟u为黑色 情况2: p的兄弟u为红色 插入操作性能分析 代码实现 删除操作 情况1:x的接替者succ为红色 情况2:x的接替者succ为黑色 情况2.1:x的父亲p为黑色,x的兄弟s为黑色,但是s有红色孩子 情况2.2:x的父亲p为黑色,x的兄弟s为黑色,且s没有红色孩子 情况2.3:x的父亲p为黑色,x的兄弟s为红色 情况2.4:x的父亲p为红色,此时x的兄弟s必定为黑色 删除操作性能分析 代码实现 完整代码及测试实例
Java - TreeMap源码解析 + 红黑树
Java提高篇(二七)-----TreeMap TreeMap的实现是红黑树算法的实现,所以要了解TreeMap就必须对红黑树有一定的了解,其实这篇博文的名字叫做:根据红黑树的算法来分析TreeMap的实现,但是为了与Java提高篇系列博文保持一致还是叫做TreeMap比较好.通过这篇博文你可以获得如下知识点: 1.红黑树的基本概念. 2.红黑树增加节点.删除节点的实现过程. 3.红黑树左旋转.右旋转的复杂过程. 4.Java 中TreeMap是如何通过put.deleteEntry两个来实现红
吐血整理:二叉树、红黑树、B&B+树超齐全,快速搞定数据结构
前言 没有必要过度关注本文中二叉树的增删改导致的结构改变,规则操作什么的了解一下就好,看不下去就跳过,本文过多的XX树操作图片纯粹是为了作为规则记录,该文章主要目的是增强下个人对各种常用XX树的设计及缘由的了解,也从中了解到常用的实现案例使用XX树实现的原因. 数据在计算机中的存储结构主要为顺序存储结构.链式存储结构.索引存储结构.散列存储结构,其中链式存储结构最常见的示例是链表与树,链式存储结构主要有以下特点: 优点:逻辑相邻的节点物理上不必相邻,插入.删除灵活,只需改变节点中的指针指向 缺点
红黑树深入剖析及Java实现
红黑树是平衡二叉查找树的一种.为了深入理解红黑树,我们需要从二叉查找树开始讲起. BST 二叉查找树(Binary Search Tree,简称BST)是一棵二叉树,它的左子节点的值比父节点的值要小,右节点的值要比父节点的值大.它的高度决定了它的查找效率. 在理想的情况下,二叉查找树增删查改的时间复杂度为O(logN)(其中N为节点数),最坏的情况下为O(N).当它的高度为logN+1时,我们就说二叉查找树是平衡的. BST的查找操作 T key = a search key Node roo
红黑树深入剖析及Java实现(转自知乎美团点评技术团队)
作者:美团点评技术团队 链接:https://zhuanlan.zhihu.com/p/24367771 来源:知乎 著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 红黑树是平衡二叉查找树的一种.为了深入理解红黑树,我们需要从二叉查找树开始讲起. BST 二叉查找树(Binary Search Tree,简称BST)是一棵二叉树,它的左子节点的值比父节点的值要小,右节点的值要比父节点的值大.它的高度决定了它的查找效率. 在理想的情况下,二叉查找树增删查改的时间复杂度为O(l
红黑树之 原理和算法详细介绍(阿里面试-treemap使用了红黑树) 红黑树的时间复杂度是O(lgn) 高度<=2log(n+1)1、X节点左旋-将X右边的子节点变成 父节点 2、X节点右旋-将X左边的子节点变成父节点
红黑树插入删除 具体参考:红黑树原理以及插入.删除算法 附图例说明 (阿里的高德一直追着问) 或者插入的情况参考:红黑树原理以及插入.删除算法 附图例说明 红黑树与AVL树 红黑树 的时间复杂度 O(logn) TreeMap TreeSet本身就是一个红黑树的实现. “红黑树”,它一种特殊的二叉查找树.红黑树的每个节点上都有存储位表示节点的颜色,可以是红(Red)或黑(Black). 红黑树的时间复杂度为: O(lgn) (1) 一棵含有n个节点的红黑树的高度至多为2log(n+1)
单例模式,堆,BST,AVL树,红黑树
单例模式 第一种(懒汉,线程不安全): public class Singleton { private static Singleton instance; private Singleton (){} public static Singleton getInstance() { if (instance == null) { instance = new Singleton(); } return instance; } } 这种写法lazy loading很明显,但是致命的是在多线程不能
红黑树——算法导论(15)
1. 什么是红黑树 (1) 简介 上一篇我们介绍了基本动态集合操作时间复杂度均为O(h)的二叉搜索树.但遗憾的是,只有当二叉搜索树高度较低时,这些集合操作才会较快:即当树的高度较高(甚至一种极端情况是树变成了1条链)时,这些集合操作并不比在链表上执行的快. 于是我们需要构建出一种"平衡"的二叉搜索树. 红黑树(red-black tree)正是其中的一种.它可以保证在最坏的情况下,基本集合操作的时间复杂度是O(lgn). (2) 性质 与普通二叉搜索树不
Sedgewick的红黑树
红黑树一直是数据结构中的难点,大部分关于算法与数据结构的学习资料(包括<算法导论>)对于这部分的讲解都是上来就下定义,告诉我们红黑树这个性质那个性质,插入删除要注意1234点,但是基本没有讲为什么这样定义红色和黑色,让人理解起来十分费力.直到我看了下图这本书中关于红黑树部分的讲解,一时间豁然开朗,上网查了下这本书的作者Sedgewick,他是伟大的高德纳的学生!红黑树的发明者! 他在这本书中告诉了我们红黑树的根本模型:以二叉树的形式实现2-3树,通过红黑树与2-3树之间的一一对应,让我们对红黑
【查找结构4】红黑树 [RBT]
红黑树的性质与定义 红黑树(red-black tree) 是一棵满足下述性质的二叉查找树: 1. 每一个结点要么是红色,要么是黑色. 2. 根结点是黑色的. 3. 所有叶子结点都是黑色的(实际上都是Null指针,下图用NIL表示).叶子结点不包含任何关键字信息,所有查询关键字都在非终结点上. 4. 每个红色结点的两个子节点必须是黑色的.换句话说:从每个叶子到根的所有路径上不能有两个连续的红色结点 5. 从任一结点到其每个叶子的所有路径都包含相同数目的黑色结点 黑深度 ——从某个结点x出发(不包
数据结构与算法--从平衡二叉树(AVL)到红黑树
数据结构与算法--从平衡二叉树(AVL)到红黑树 上节学习了二叉查找树.算法的性能取决于树的形状,而树的形状取决于插入键的顺序.在最好的情况下,n个结点的树是完全平衡的,如下图"最好情况"所示,此时树的高度为⌊log2 n⌋ + 1,所以时间复杂度为O(lg n)当我们将键以升序或者降序插入的时候,得到的是一棵斜树,如下图中的"最坏情况",树的高度为n,时间复杂度也变成了O(n) 在最坏情况下,二叉查找树的查找和插入效率很低.为了解决这个问题,引出了平衡二叉树(AV
大名鼎鼎的红黑树,你get了么?2-3树 绝对平衡 右旋转 左旋转 颜色反转
前言 11.1新的一月加油!这个购物狂欢的季节,一看,已囊中羞涩!赶紧来恶补一下红黑树和2-3树吧!红黑树真的算是大名鼎鼎了吧?即使你不了解它,但一定听过吧?下面跟随我来揭开神秘的面纱吧! 一.2-3树 1.抢了红黑树的光环? 今天的主角是红黑树,是无疑的,主角光环在呢!那2-3树又是什么鬼呢?学习2-3树不仅对理解红黑树有帮助,对理解B类树,也是有巨大帮助的,所以学习2-3树很必要! 2.基本性质 2-3树满足二分搜索树的基本性质,但节点可以存放一个元素或两个元素!如下图,就是2-3树: 说明
Linux 内核里的数据结构:红黑树(rb-tree)
转自:https://www.cnblogs.com/slgkaifa/p/6780299.html 作为一种数据结构.红黑树可谓不算朴素.由于各种宣传让它过于神奇,网上搜罗了一大堆的关于红黑树的文章,不外乎千篇一律,介绍概念,分析性能,贴上代码,然后给上罪恶的一句话.它最坏情况怎么怎么地... 我们想,一棵二叉树怎么就是最坏情况,那就是它退化为一个链表,这样查找就成了遍历.问题是,平衡二叉树怎么会退回链表!它是怎么保持平衡的?能不能简单地阐述?当然能够.一般的讲述红黑树的资料都是直接给出黑节点
红黑树(RB Tree)
看到一篇很好的文章 文章来源:http://www.360doc.com/content/15/0730/00/14359545_488262776.shtml 红黑树是一种高效的索引树,多于用关联数组.STL容器的数据结构中.说到红黑树不得不提下二分查找树和AVL树.二分查找树的时间复杂度为O(h)(h为树的高度),如果树的高度较低,这些集合操作会很快,但是如果树的高度很高时,效率就会很低,特别是当节点n一定时,树的高度有时会很大,当然最好的情况是我们希望树的高度为lg(n),于是我们可以对查
TreeMap----的实现原理(红黑树)
TreeMap的实现是红黑树算法的实现,所以要了解TreeMap就必须对红黑树有一定的了解,其实这篇博文的名字叫做:根据红黑树的算法来分析TreeMap的实现,但是为了与Java提高篇系列博文保持一致还是叫做TreeMap比较好.通过这篇博文你可以获得如下知识点: 1.红黑树的基本概念. 2.红黑树增加节点.删除节点的实现过程. 3.红黑树左旋转.右旋转的复杂过程. 4.Java 中TreeMap是如何通过put.deleteEntry两个来实现红黑树增加.删除节点的. 我想通过这篇博文你对Tr
BZOJ 3227: [Sdoi2008]红黑树(tree)
BZOJ 3227: [Sdoi2008]红黑树(tree) 标签(空格分隔): OI-BZOJ OI-其它 Time Limit: 10 Sec Memory Limit: 128 MB Description 红黑树是一类特殊的二叉搜索树,其中每个结点被染成红色或黑色.若将二叉搜索树结点中的空指针看作是指向一个空结点,则称这类空结点为二叉搜索树的前端结点.并规定所有前端结点的高度为-1. 一棵红黑树是满足下面"红黑性质"的染色二叉搜索树: (1) 每个结点被染成红色或黑色: (2)
B树、B+树、红黑树、AVL树
定义及概念 B树 二叉树的深度较大,在查找时会造成I/O读写频繁,查询效率低下,所以引入了多叉树的结构,也就是B树.阶为M的B树具有以下性质: 1.根节点在不为叶子节点的情况下儿子数为 2 ~ M2.除根结点以外的非叶子结点的儿子数为 M/2(向上取整) ~ M3.拥有 K 个孩子的非叶子节点包含 k-1 个keys(关键字),且递增排列4.所有叶子结点在同一层,即深度相同 (叶节点可以看成是一种外部节点,不包含任何关键字信息) 在B-树中,每个结点中关键字从小到大排列,并且当该结点的孩子是非叶
【algo&ds】4.B树、字典树、红黑树、跳表
上一节内容[algo&ds]4.树和二叉树.完全二叉树.满二叉树.二叉查找树.平衡二叉树.堆.哈夫曼树.散列表 7.B树 B树的应用可以参考另外一篇文章 8.字典树Trie Trie 树,也叫"字典树".顾名思义,它是一个树形结构.它是一种专门处理字符串匹配的数据结构,用来解决在一组字符串集合中快速查找某个字符串的问题.它的一个经典应用场景就是输入框的自动提示. 举个例子来说明一下,我们有 6 个字符串,它们分别是:how,hi,her,hello,so,see.我们希望在里面
红黑树插入操作---以JDK 源码为例
红黑树遵循的条件: 1.根节点为黑色. 2.外部节点(叶子节点)为黑色. 3.红色节点的孩子节点为黑色.(由此,红色节点的父节点也必为黑色) 4.从根节点到任一外部节点的路径上,黑节点的数量相同. 节点插入过程 在红黑树中插入节点,首先调用查找接口,并在查找终止位置创建节点,并将节点染成红色. 当新插入节点的父节点为红色时,不满足红黑树的条件,产生'双红'现象.此时,需要对树的拓扑结构和节点颜色进行调节. 双黑修正过程 以JDK TreeMap.class 中定义的红黑树类中插入修正函数为
JAVA数据结构之红-黑树
本篇博客我会重点介绍对红-黑树的理解,重点介绍红-黑树的查找,这里我们将要讨论的算法称为自顶向下插入,也就是把沿着树向下查找插入点 Ⅰ.平衡树和非平衡树 平衡树和非平衡树:当插入一组数据关键字是按照升序或者降序插入的话此时就是集中最极端的不平衡树,此时也可看做是一个链表此时对于此树的查找的时间复杂度为O(N),所以搜索不平衡树的时间复杂度介于平衡树时间复杂度O(logN)和O(N)之间时间具体取决于树的不平衡度. Ⅱ.红-黑树规则 接下来我们要讨论的红-黑树具有以下几个特征(红-黑树规则): 1
HashMap1.7和1.8,红黑树原理!
jdk 1.7 概述 HashMap基于Map接口实现,元素以键值对的方式存储,并允许使用null键和null值,但只能有一个键作为null,因为key不允许重复,另外HashMap不能保证放入元素的数据,它是无序的,和放入的顺序并不能相同,HashMap是线程不安全的. 继承关系 public class HashMap<K,V>extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable
热门专题
java中的数据类型对应postgres数据库里的字段类型
RF中分支中使用断言
ubuntu 怎么用命令安装Ryu
qt 多线程 访问数据库
centos chroot 账号和本地账号通用
linux服务器如何查看访问了哪些网页
Javaswing写出类似浏览器标签的窗体
c# HttpClient 下载文件
C#Groupy自定义比较规则
web.xml第一行报错的原因
bat脚本修改浏览器配置
vue 聊天记录消息定位
vs2019连接mysql数据库实体框架不兼容
vmware evc 降低性能
x丫sr一482一cn7z口戾香熟丸
C# printdocument 设置 darkness
sqlite3 嵌入式数据库移植
G2 分组柱状图 data
angular项目包含文件
mysql的相关软件产品