ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton 摘要 我们训练了一个大型的深度卷积神经网络,来将在ImageNet LSVRC-2010大赛中的120万张高清图像分为1000个不同的类别.对测试数据,我们得到了top-1误差率37.5%,以及top-5误差率17.0%,这个效果比之前最顶尖的都要好得多.该神经网络有
Deep learning:二十九(Sparse coding练习) Deep learning:二十八(使用BP算法思想求解Sparse coding中矩阵范数导数) Deep learning:二十七(Sparse coding中关于矩阵的范数求导) Deep learning:二十六(Sparse coding简单理解) 注意与降维的区别,而且这也是个深坑! 稀疏表达(sparse representation) 这个东西好,原因之一是更接近生物的认知过程. 八(Sparse Auto