R-CNN论文翻译 Rich feature hierarchies for accurate object detection and semantic segmentation 用于精确物体定位和语义分割的丰富特征层次结构 2017-11-29 摘要 过去几年,在权威数据集PASCAL上,物体检测的效果已经达到一个稳定水平.效果最好的方法是融合了多种图像低维特征和高维上下文环境的复杂结合系统.在这篇论文里,我们提出了一种简单并且可扩展的检测算法,可以将mAP在VOC2012最
论文标题:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 论文作者: Baoguang Shi, Xiang Bai and Cong Yao 论文代码的下载地址:http://mc.eistar.net/~xbai/CRNN/crnn_code.zip 论文地址:https://arxiv.org/p
R-CNN论文翻译 <Rich feature hierarchies for accurate object detection and semantic segmentation> 用于精确物体定位和语义分割的丰富特征层次结构 文章出处:https://www.cnblogs.com/pengsky2016/. 摘要: 过去几年,在权威数据集PASCAL上,物体检测的效果已经达到一个稳定水平.效果最好的方法是融合了多种图像低维特征和高维上下文环境的复杂结合系统.在这篇论文里
SPPNet论文翻译 <Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition> Kaiming He 摘要: 当前深度卷积神经网络(CNNs)都需要输入的图像尺寸固定(比如224×224).这种人为的需要导致面对任意尺寸和比例的图像或子图像时降低识别的精度(因为要经过crop/warp).本文给网络配上一个叫做“空间金字塔池化”(spatial pyramid pooling,
论文标题:Rich feature hierarchies for accurate object detection and semantic segmentation 标题翻译:丰富的特征层次结构,可实现准确的目标检测和语义分割 论文作者:Ross Girshick Jeff Donahue Trevor Darrell Jitendra Mali 论文地址:http://fcv2011.ulsan.ac.kr/files/announcement/513/r-cnn-cvpr.pdf RC
论文标题:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 标题翻译:用于视觉识别的深度卷积神经网络中的空间金字塔池 论文作者:Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun 论文地址:https://arxiv.org/pdf/1406.4729.pdf SPP的GitHub地址:https://github.com/yueruc
论文标题:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 标题翻译:OverFeat:使用卷积神经网络集成识别,定位和检测 论文作者:Pierre Sermanet David Eigen Xiang Zhang Michael Mathieu Rob Fergus Yann LeCun 论文地址:https://arxiv.org/pdf/1312.62
论文标题:Faster R-CNN: Down the rabbit hole of modern object detection 论文作者:Zhi Tian , Weilin Huang, Tong He , Pan He , and Yu Qiao 论文地址:https://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/ 论文地址:Object detect
论文标题:Detecting Text in Natural Image with Connectionist Text Proposal Network 论文作者:Zhi Tian , Weilin Huang, Tong He , Pan He , and Yu Qiao 论文源代码的下载地址:https://github.com/tianzhi0549/CTPN 论文代码的下载地址:https://github.com/eragonruan/text-detection-ctpn 论文地址