首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
边缘校正 opencv
2024-10-31
opencv图像倾斜校正和切边
#include<opencv2/opencv.hpp> #include<iostream> #include<cmath> using namespace std; using namespace cv; const char input[] = "Input image"; const char output[] = "Output image"; void fileCutLine(int, void*);//对图片边缘切取
OpenCV图像处理篇之边缘检測算子
3种边缘检測算子 灰度或结构等信息的突变位置是图像的边缘,图像的边缘有幅度和方向属性.沿边缘方向像素变化缓慢,垂直边缘方向像素变化剧烈.因此,边缘上的变化能通过梯度计算出来. 一阶导数的梯度算子 对于二维的图像.梯度定义为一个向量. %20\nabla%20f(x,y)=\begin{pmatrix}G_x%20\\%20G_y\end{pmatrix}=\begin{pmatrix}%20\frac{\partial%20f}{x}%20\\%20\frac{\partial%20f}{y}%
opencv::处理边缘
卷积边界问题 图像卷积的时候边界像素,不能被卷积操作,原因在于边界像素没有完全跟kernel重叠,所以当3x3滤波时候有1个像素的边缘没有被处理,5x5滤波的时候有2个像素的边缘没有被处理. 处理边缘 在卷积开始之前增加边缘像素,填充的像素值为0或者RGB黑色,比如3x3在四周各填充1个像素的边缘, 这样就确保图像的边缘被处理,在卷积处理之后再去掉这些边缘. openCV中默认的处理方法是: BORDER_DEFAULT 此外常用的还有如下几种: - BORDER_CONSTANT – 填充边缘
OpenCV图像处理篇之边缘检测算子
OpenCV图像处理篇之边缘检测算子 转载: http://xiahouzuoxin.github.io/notes/ 3种边缘检测算子 一阶导数的梯度算子 高斯拉普拉斯算子 Canny算子 OpenCV中相关源码 试试身手 3种边缘检测算子 灰度或结构等信息的突变位置是图像的边缘,图像的边缘有幅度和方向属性,沿边缘方向像素变化缓慢,垂直边缘方向像素变化剧烈.因此,边缘上的变化能通过梯度计算出来. 一阶导数的梯度算子 对于二维的图像,梯度定义为一个向量, Gx对于x方向的梯度,Gy对应y方向的梯
【OpenCV新手教程第14】OpenCVHough变换:霍夫变换线,霍夫变换圆汇编
本系列文章由@浅墨_毛星云 出品.转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/26977557 作者:毛星云(浅墨) 微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: happylifemxy@163.com 写作当前博文时配套使用的OpenCV版本号: 2.4.9 本篇文章中.我们一起探讨了Ope
图像矫正-基于opencv实现
一.引言 上篇文章中四种方法对图像进行倾角矫正都非常有效.Hough变换和Radon相似,其抗干扰能力比较强,但是运算量大,程序执行慢,其改进方法为:我们可以不对整幅图像进行操作,可以在图像中选取一块(必须含有一条与倾角有关的直线)进行操作,从而减小运算量.这里Hough变换法和Radon变换法进行倾角检测的最大精度为1度.它们的优点是可以计算有断点的直线的倾角.最小二乘法的优点就是运算量小,但是其抗干扰能力比较差,容易受到噪声的影响.两点法虽然理论简单,但由于采样点比较多而且这些点服从随机分布
【OpenCV入门教程之十四】OpenCV霍夫变换:霍夫线变换,霍夫圆变换合辑
http://blog.csdn.net/poem_qianmo/article/details/26977557 本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/26977557 作者:毛星云(浅墨) 微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: happylif
边缘检测︱基于 HED网络TensorFlow 和 OpenCV 实现图片边缘检测
本文摘录自<手机端运行卷积神经网络的一次实践 – 基于 TensorFlow 和 OpenCV 实现文档检测功能> 只截取感兴趣 的片段. . 一.边缘检测 1.传统边缘检测 Google 搜索 opencv scan document,是可以找到好几篇相关的教程的,这些教程里面的技术手段,也都大同小异,关键步骤就是调用 OpenCV 里面的两个函数,cv2.Canny() 和 cv2.findContours(). 看上去很容易就能实现出来,但是真实情况是,这些教程,仅仅是个 demo 演示
【OpenCV新手教程之十四】OpenCV霍夫变换:霍夫线变换,霍夫圆变换合辑
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/26977557 作者:毛星云(浅墨) 微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: happylifemxy@163.com 写作当前博文时配套使用的OpenCV版本号: 2.4.9 本篇文章中.我们一起探讨了Ope
openCV 二 图像处理
官网:https://docs.opencv.org/3.2.0/df/d9d/tutorial_py_colorspaces.html 改变颜色空间 本教程颜色空间转换:BGR ↔ Gray and BGR ↔ HSV. cv2.cvtColor(input_image, flag) input_image:输入图像 flag:openCV标志位,决定颜色空间转换类型,如:(BGR → Gray->flags cv2.COLOR_BGR2GRAY).(BGR → HSV->cv2.COLOR
Python 图像处理 OpenCV (7):图像平滑(滤波)处理
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python 图像处理 OpenCV (3):图像属性.图像感兴趣 ROI 区域及通道处理」 「Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间」 「Python 图像处理 OpenCV (5):图像的几何变换」 「Python 图像处理 OpenCV (6):图像的阈值处理」 1.
OpenCV 之 特征匹配
OpenCV 中有两种特征匹配方法:暴力匹配 (Brute force matching) 和 最近邻匹配 (Nearest Neighbors matching) 它们都继承自 DescriptorMatcher,是基于特征描述符距离的匹配,根据描述符的不同,距离可以是 欧氏距离,也可以是 汉明距 1 暴力匹配 首先,任取图像 A 的一个特征描述符,计算它到图像 B 中所有特征描述符的距离:然后,将所得到的距离进行排序:最后,选择距离最短的特征,作为 A-B 的匹配点 1.1 BFMatc
基于 TensorFlow 在手机端实现文档检测
作者:冯牮 前言 本文不是神经网络或机器学习的入门教学,而是通过一个真实的产品案例,展示了在手机客户端上运行一个神经网络的关键技术点 在卷积神经网络适用的领域里,已经出现了一些很经典的图像分类网络,比如 VGG16/VGG19,Inception v1-v4 Net,ResNet 等,这些分类网络通常又都可以作为其他算法中的基础网络结构,尤其是 VGG 网络,被很多其他的算法借鉴,本文也会使用 VGG16 的基础网络结构,但是不会对 VGG 网络做详细的入门教学 虽然本文不是神经网络技术的入门教
[Object Tracking] Contour Detection through Tensorflow running on smartphone
From: 手机端运行卷积神经网络的一次实践 -- 基于 TensorFlow 和 OpenCV 实现文档检测功能 貌似不错的东西:移动端视觉识别模型:MobileNets Holistically-nested Edge Detection 是屠卓文教授课题组在ICCV 2015 的工作. 该工作最大的亮点在于,一改之前边缘检测方法基于局部策略的方式,而是采用全局的图像到图像的处理方式. 即:不再针对一个个patch进行操作,而是对整幅图像进行操作,为高层级信息的获取提供了便利. 题材看上去很
【OpenCV-Python】-图像平滑
原文为段立辉翻译,感谢Linux公社www.linuxidc.com此文档为自学转述,如有侵权请联系本人. 目标: • 学习使用不同的低通滤波器对图像进行模糊 • 使用自定义的滤波器对图像进行卷积(2D 卷积) 1.2D卷积 同一维信号一样,我们也可以对2D图像实施低通滤波(LPF),高通滤波(HPF)等,LPF帮我们去除噪音,模糊图像.HPF帮我们找到图像的边缘. Opencv 提供的函数cv2.filter2D() 可以对一副图像进行卷积操作.如下图是一个5✖️5的平均滤波器核. 操作如
opencv-学习笔记(2)
opencv-学习笔记(2) 这章记录了 获取像素点,改变像素点 获取图像的属性(行,列,通道数,数据类型) roi感应区 拆分以及合并图像通道 边缘扩充 opencv获取像素点,改变像素点 ----下面是一般方法 获取像素很简单只需要img[x,y]就可以获取像素 img[x,y,0/1/2]就可以获取brg中某一值 修改也很简单img[100,100]=[255,255,255]即可 ----优化 我们用item获取元嵩 itemset改变元素 代码如下 import numpy as np
MATLAB的边缘检测函数中隐含的细化(非极大值抑制)算法
前段时间做了一个车牌检测识别的项目,我的任务是将MATLAB中的算法移植成C++代码.在车牌区域提取的过程中,用到了水平方向的Sobel算子检测垂直边缘,一开始我直接把MATLAB中的 bw = edge(I, 'sobel', 'vertical'); 语句改写成OpenCV中的 cv::Mat sobel_kernel = (cv::Mat_<float>(3,3) << -0.125, 0, 0.125, -0.25, 0, 0.25, -0.125, 0, 0.125);
opencv-霍夫直线变换与圆变换
转自:https://blog.csdn.net/poem_qianmo/article/details/26977557 一.引言 在图像处理和计算机视觉领域中,如何从当前的图像中提取所需要的特征信息是图像识别的关键所在.在许多应用场合中需要快速准确地检测出直线或者圆.其中一种非常有效的解决问题的方法是霍夫(Hough)变换,其为图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.最基本的霍夫变换是从黑白图像中检测直线(线段).这篇文章就将介绍OpenCV中霍夫变换的使
OpenCV-Python Canny边缘检测 | 十九
目标 在本章中,我们将学习 Canny边缘检测的概念 OpenCV函数: cv.Canny() 理论 Canny Edge Detection是一种流行的边缘检测算法.它由John F. Canny发明 这是一个多阶段算法,我们将经历每个阶段. 降噪 由于边缘检测容易受到图像中噪声的影响,因此第一步是使用5x5高斯滤波器消除图像中的噪声.我们已经在前面的章节中看到了这一点. 查找图像的强度梯度 然后使用Sobel核在水平和垂直方向上对平滑的图像进行滤波,以在水平方向(Gx)和垂直方向(Gy)上获
OpenCV-Python 图像平滑 | 十六
目标 学会: 使用各种低通滤镜模糊图像 将定制的滤镜应用于图像(2D卷积) 2D卷积(图像过滤) 与一维信号一样,还可以使用各种低通滤波器(LPF),高通滤波器(HPF)等对图像进行滤波.LPF有助于消除噪声,使图像模糊等.HPF滤波器有助于在图像中找到边缘. OpenCV提供了一个函数cv.filter2D来将内核与图像进行卷积.例如,我们将尝试对图像进行平均滤波.5x5平均滤波器内核如下所示: K=125[1111111111111111111111111] K = \frac{1}{25}
OpenCV实现基于傅里叶变换的旋转文本校正
代码 先给出代码,再详细解释一下过程: #include <opencv2/core/core.hpp> #include <opencv2/imgproc/imgproc.hpp> #include <opencv2/highgui/highgui.hpp> #include <iostream> using namespacecv; using namespacestd; #define GRAY_THRESH 150 #define HOUGH_VOT
热门专题
visualsvn7.3注册码
mybatis sqlserver datetime 类型
dot.js 判断如果为double类型数据则添加
element tabs 切换 获取属性
ubantu 飞机场客户端
iframe子页面中的fixed属性不生效
vue多项目集成 路由
基于增广路算法求解网络最大流
finecms后台getshell
kettle 共享DB连接带汉字
项目一 第一个php程序
CVE-2018-1058 修复
/proc文件夹的作用是什么
python中delay和sleep区别
flutter拖拽控件
input type number 鼠标上下滚动会加减
java8 两层双循环
百度对象存储跨域设置
无法连接到Microsoft SQL Server 2014
配置根据环境进行配置伪静态