用Python求均值与方差,可以自己写,也可以借助于numpy,不过到底哪个快一点呢? 我做了个实验,首先生成9百万个样本: nlist=range(0,9000000) nlist=[float(i)/1000000 for i in nlist] N=len(nlist) 第二行是为了让样本小一点,否则从1加到9百万会溢出的. 自己实现,遍历数组来求均值方差: sum1=0.0 sum2=0.0 for i in range(N): sum1+=nlist[i] sum2+=nlist[i]
由于上一例的实现中只针对了离散数据,为了扩充处理范围,我实现了一下对线性数据的简单处理,在其中我选择用中位数作为指标,平均数.众数等等其他数据在我看来异曲同工,最终也都会有较相似的结构. 求连续数据的香农熵 def calcLinerData(dataSet): num=len(dataSet) count={1:0,0:0} shannonEnt=0.0 for i in range(num): feature = [ example[-1] for example in dataSet] f
接上篇:安居客scrapy房产信息爬取到数据可视化(下)-可视化代码,可视化的实现~ 先看看保存的数据吧~ 本人之前都是习惯把爬到的数据保存到本地json文件, 这次保存到数据库后发现使用mongodb的聚合统计省去了好多自己用python写计算逻辑的步骤,好方便啊~~ 第一张图柱状图 第一张图代码解析: #encoding:utf-8 import random from pyecharts import Bar from pymongo import MongoClient conn = M
为了看出数据属于哪个选手,教练向各个选手的数据文件中添加了标识数据:选手全名,出生日期,计时数据. 例如:sarah文件的数据更新为: Sarah Sweeney,2002-6-17,2:58,2.58,2:39,2-25,2-55,2:54,2.18,2:55,2:55,2:22,2-21,2.22 接下来主要考虑Sarah的数据,从教练的原始数据抽取并处理Sarah的3个最快时间.
转自:直觉模糊C均值聚类与图像阈值分割 - liyuefeilong的专栏 - CSDN博客 https://blog.csdn.net/liyuefeilong/article/details/43816495 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 主函数 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function main ima = i