论文阅读:Face Recognition: From Traditional to Deep Learning Methods <人脸识别综述:从传统方法到深度学习> 一.引言 1.探索人脸关于姿势.年龄.遮挡.光照.表情的不变性,通过特征工程人工构造feature,结合PCA.LDA.支持向量机等机器学习算法. 2.流程 人脸检测,返回人脸的bounding box 人脸对齐,用2d或3d的参考点,去对标人脸 人脸表达,embed 人脸匹配,匹配分数 二.人脸识
GPU加速:宽深度推理 Accelerating Wide & Deep Recommender Inference on GPUs 推荐系统推动了许多最流行的在线平台的参与.随着为这些系统提供动力的数据量的快速增长,数据科学家正越来越多地从更传统的机器学习方法转向高度表达的深度学习模型,以提高其建议的质量.Google的广度和深度架构已经成为解决这些问题的一种流行的模型选择,既有其对信号稀疏性的鲁棒性,也有其通过DNN线性组合分类器API在TensorFlow中的用户友好实现.虽然这些深度学习
NVIDIA GPUs上深度学习推荐模型的优化 Optimizing the Deep Learning Recommendation Model on NVIDIA GPUs 推荐系统帮助人在成倍增长的选项中找到想要的东西.是在许多在线平台上推动用户参与的关键组件. 随着工业数据集规模的迅速增长,利用大量训练数据的深度学习推荐模型(deep learning,DL)已经开始显示出其相对于传统方法的优势.现有的基于DL的推荐系统模型包括广度和深度模型.深度学习推荐模型(DLRM).神经协同滤波(