首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
随机干扰项方差的置信区间 R语言
2024-11-10
用R语言求置信区间
用R语言求置信区间 用R语言求置信区间是很方便的,而且很灵活,至少我觉得比spss好多了. 如果你要求的只是95%的置信度的话,那么用一个很简单的命令就可以实现了 首先,输入da=c(你的数据,用英文逗号分割),然后t.test(da),运行就能得到结果了. 我的数据是newbomb <- c(28,26,33,24,34,-44,27,16,40,-2,29,22,24,21,25,30,23,29,31,19) t.test(newbomb)得到的结果如下 如果要求任意置信度下的置信区间
使用R语言-计算均值,方差等
R语言对于数值计算很方便,最近用到了计算方差,标准差的功能,特记录. 数据准备 height <- c(6.00, 5.92, 5.58, 5.92) 1 计算均值 mean(height) [1] 5.855 2 计算中位数 median(height) [1] 5.92 3 计算标准差 sd(height) [1] 0.1871719 4 计算方差 var(height) [1] 0.03503333 5 计算两个变量之间的相关系数 cor(height,log(height)) [1] 0
R语言实战(四)回归
本文对应<R语言实战>第8章:回归 回归是一个广义的概念,通指那些用一个或多个预测变量(也称自变量或解释变量)来预测响应变量(也称因变量.效标变量或结果变量)的方法.通常,回归分析可以用来挑选与相应变量相关的解释变量,可以描述两者的关系,也可以生成一个等式,通过解释变量来预测响应变量. 回归分析的各种变体 回归类型 用途 简单线性 用一个量化的解释变量预测一个量化的响应变量 多项式 用一个量化的解释变量预测一个量化的响应变量,模型的关系是n阶多项式 多元线性 用两个或多个量化的解释变量预测一个
R语言实战(五)方差分析与功效分析
本文对应<R语言实战>第9章:方差分析:第10章:功效分析 ==================================================================== 方差分析: 回归分析是通过量化的预测变量来预测量化的响应变量,而解释变量里含有名义型或有序型因子变量时,我们关注的重点通常会从预测转向组别差异的分析,这种分析方法就是方差分析(ANOVA).因变量不只一个时,称为多元方差分析(MANOVA).有协变量时,称为协方差分析(ANCOVA)或多元协方差分析
R语言各种假设检验实例整理(常用)
一.正态分布参数检验 例1. 某种原件的寿命X(以小时计)服从正态分布N(μ, σ)其中μ, σ2均未知.现测得16只元件的寿命如下: 159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170 问是否有理由认为元件的平均寿命大于255小时? 解:按题意,需检验 H0: μ ≤ 225 H1: μ > 225 此问题属于单边检验问题 可以使用R语言t.test t.test(x,y=N
R语言函数总结(转)
R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间的语句就是是注释. R是动态类型.强类型的语
R语言实战(八)广义线性模型
本文对应<R语言实战>第13章:广义线性模型 广义线性模型扩展了线性模型的框架,包含了非正态因变量的分析. 两种流行模型:Logistic回归(因变量为类别型)和泊松回归(因变量为计数型) glm()函数的参数 分布族 默认的连接函数 binomial (link = “logit”) gaussian (link = “identity”) gamma (link = “inverse”) inverse.gaussian (link = “1/mu^2”) poisson (link =
【R笔记】R语言函数总结
R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间的语句就
R语言笔记完整版
[R笔记]R语言函数总结 R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(
【R语言学习】时间序列
时序分析会用到的函数 函数 程序包 用途 ts() stats 生成时序对象 plot() graphics 画出时间序列的折线图 start() stats 返回时间序列的开始时间 end() stats 返回时间序列的结束时间 frequency() stats 返回时间序列中时间点的个数 window() stats 对时序对象取子集 ma() forecast 拟合一个简单的移动平均模型 stl() stats 用LOESS光滑将时序分解为季节项.趋势项和随机项 monthplot()
【转】R语言函数总结
原博: R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间
R 语言实战-Part 3 笔记
R 语言实战(第二版) part 3 中级方法 -------------第8章 回归------------------ #概念:用一个或多个自变量(预测变量)来预测因变量(响应变量)的方法 #最常用:OLS--普通最小二乘回归法,包括简单线性回归.多项式回归.多元线性回归 #过程:拟合OLS回归模型-->评价拟合优度-->假设检验-->选择模型 #OLS回归 #目标:减少因变量的真实值和预测值的差值来获得模型参数(截距和斜率),即使得残差平方和最小 #数据需满足:正态性.独立性.线性
R语言实战(三)基本图形与基本统计分析
本文对应<R语言实战>第6章:基本图形:第7章:基本统计分析 ================================================================================================================================================== 本章讨论的图形,主要用于分析数据前,对数据的初步掌握.想要对数据有一个初步的印象,最好的方式就是观察它,也就是将数据可视化.在这个过程中,我们
R语言实战(二)数据管理
本文对应<R语言实战>第4章:基本数据管理:第5章:高级数据管理 创建新变量 #建议采用transform()函数 mydata <- transform(mydata, sumx = x1 + x2, meanx = (x1 + x2)/2) 重编码 < 小于 <= 小于或等于 > 大于 >= 大于或等于 == 严格等于(比较浮点类型时慎用,易误判) != 不等于 !x 非x x | y x或y x & y x和y isTRUE(x) x是否为TRUE
机器学习:异常检测算法Seasonal Hybrid ESD及R语言实现
Twritters的异常检测算法(Anomaly Detection)做的比较好,Seasonal Hybrid ESD算法是先用STL把序列分解,考察残差项.假定这一项符合正态分布,然后就可以用Generalized ESD提取离群点. 目标是检测出时间序列数据集的异常点,如图所示,蓝色线是时间序列数据集,红色是圈是异常点. R语言实现如下,一些依赖包需要install.packages("")或者手动在cran社区下载(注意依赖包的下载).本人github下载源码. 1 主函数是,
R语言书籍的学习路线图
现在对R感兴趣的人越来越多,很多人都想快速的掌握R语言,然而,由于目前大部分高校都没有开设R语言课程,这就导致很多人不知道如何着手学习R语言. 对于初学R语言的人,最常见的方式是:遇到不会的地方,就跑到论坛上吼一嗓子,然后欣然or悲伤的离去,一直到遇到下一个问题再回来.当然,这不是最好的学习方式,最好的方式是——看书.目前,市面上介绍R语言的书籍很多,中文英文都有.那么,众多书籍中,一个生手应该从哪一本着手呢?入门之后如何才能把自己练就成某个方面的高手呢?相信这是很多人心中的疑问.有这种疑问的人
主成分分析(PCA)原理及R语言实现
原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及计算步骤 - 文库 主成分分析之R篇 [机器学习算法实现]主成分分析(PCA)--基于python+numpy scikit-learn中PCA的使用方法 Python 主成分分析PCA 机器学习实战-PCA主成分分析.降维(好) 关于主成分分析的五个问题 多变量统计方法,通过析取主成分显出最大的个
机器学习与R语言
此书网上有英文电子版:Machine Learning with R - Second Edition [eBook].pdf(附带源码) 评价本书:入门级的好书,介绍了多种机器学习方法,全部用R相关的包实现,案例十分详实,理论与实例结合. 目录 第一章 机器学习简介 第二章 数据的管理和理解 第三章 懒惰学习--使用近邻分类 第四章 概率学习--朴素贝叶斯分类 第五章 分而治之--应用决策树和规则进行分类 第六章 预测数值型数据--回归方法 第七章 黑箱方法--神经网络和支持向量机 第八章 探
第四篇:R语言数据可视化之折线图、堆积图、堆积面积图
折线图简介 折线图通常用来对两个连续变量的依存关系进行可视化,其中横轴很多时候是时间轴. 但横轴也不一定是连续型变量,可以是有序的离散型变量. 绘制基本折线图 本例选用如下测试数据集: 绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴.然后调用条形图函数geom_line()便可绘制出基本折线图.R语言示例代码如下: # 基函数 ggplot(BOD, aes(x = Time, y = demand)) + # 折线图函数 geom_line() 运行结果:
数据分析与R语言
数据结构 创建向量和矩阵 函数c(), length(), mode(), rbind(), cbind() 求平均值,和,连乘,最值,方差,标准差 函数mean(), sum(), min(), max(), var(), sd(), prod() 帮助文档 函数help() 生成向量 seq() 生成字母序列letters 新建向量 Which()函数,rev()函数,sort()函数 生成矩阵 函数matrix() 矩阵运算 函数t(),矩阵加减 矩阵运算 矩阵相乘,函数diag() 矩阵
热门专题
Java 循环分批遍历subList
java hmacsha1 加密
editor word不允许粘贴本地图片
centos8禁止休眠和锁屏
python全国组织机构统一社会信用代码查询
eplan端子安装板
前端 $templates{}
Ubuntu下创建多层次目录权限不够
jmeter 循环获取数据库查询的变量并赋值给接口
oracle 全表扫描 异步IO 限流
tomcat9 windows并发量
springboot设置接口的返回值编码格式
wpf中自定义DataGridTextColumn样式
Scikit-Neural Network库 python
Oracle kill 通信通道的文件结尾
mysql datetime原理
.NET6正则表达式获取所有表名与别名
vba编号按月自动增加
c# IntPtr * 和IntPtr
ubuntu清空iptables