记得第一次接触手写数字识别数据集还在学习TensorFlow,各种sess.run(),头都绕晕了.自从接触pytorch以来,一直想写点什么.曾经在2017年5月,Andrej Karpathy发表的一篇Twitter,调侃道:l've been using PyTorch a few months now, l've never felt better, l've more energy.My skin is clearer. My eye sight has improved.确实,使用p
BP神经网络的手写数字识别 ANN 人工神经网络算法在实践中往往给人难以琢磨的印象,有句老话叫“出来混总是要还的”,大概是由于具有很强的非线性模拟和处理能力,因此作为代价上帝让它“黑盒”化了.作为一种general purpose的学**算法,如果你实在不想去理会其他类型算法的理论基础,那就请使用ANN吧.本文为笔者使用BP神经网络进行手写数字识别的整体思路和算法实现,由于近年来神经网络在深度学**,尤其是无监督特征学**上的成功,理解神经网络的实现机制也许可以让“黑盒”变得不再神秘. 首先,作
用PyTorch完成手写数字识别 import numpy as np import torch from torch import nn, optim import torch.nn.functional as F from torch.autograd import Variable from torch.utils.data import DataLoader from torchvision import transforms from torchvision import datase
引言 这段时间来,看了西瓜书.蓝皮书,各种机器学习算法都有所了解,但在实践方面却缺乏相应的锻炼.于是我决定通过Kaggle这个平台来提升一下自己的应用能力,培养自己的数据分析能力. 我个人的计划是先从简单的数据集入手如手写数字识别.泰坦尼克号.房价预测,这些目前已经有丰富且成熟的方案可以参考,之后关注未来就业的方向如计算广告.点击率预测,有合适的时机,再与小伙伴一同参加线上比赛. 数据集 介绍 MNIST ("Modified National Institute of Standards an