首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
bios 寄存器配置
2024-09-03
BIOS备忘录之x86硬件编程(寄存器与IO)
SOC固件(BIOS)开发: 1.熟悉硬件原理图:要弄清楚pin脚的功能: 2.配置GPIO引脚,配置成Native功能还是GPIO功能(如果是配置成GPIO,需要在code里面显式的使用): 3.硬件驱动是通过controller的寄存器来访问device的:以IIC为例,如果SOC有IIC的controller,固件程序只需要配置IIC的GPIO为native功能,然后code里面通过读写IIC controller的寄存器就可以完成对IIC device的访问(IIC的硬件时序由硬件con
ili9325--LCD寄存器配置研究
2011-06-22 22:18:12 自己根据ili9325的规格书编写驱动.发现LCD屏没显示.于是怀疑是某些寄存器设置错误.要调试的话最好还是先熟悉寄存器的作用,调试的时候只要看到现象就能分析了.否则真是摸不到头脑.于是乎,对ili9325做了如下寄存器研究学习.视频太大了,就不上传了. 1,Driver Output Control (R01h) 1)相关理论: LCD显示器采用按行按列的有源矩阵驱动方式,行线都是接在像素NMOS管的栅极(gate),列线接在NMOS管的源极(sourc
关于AXI_Quad_SPI的寄存器配置
关于AXI_Quad_SPI的寄存器配置 1.核初始化配置 首先是: 40:0000_000A 1C:8000_0000 28:0000_0004 2.命令与dummy_data 60:000001E6 60:00000186 68:{24'h000000,cmd} 68:{24'h000000,add0} 68:{24'h000000,add1} 68:{24'h000000,add2} 68:{24'h000000,data1} 68:{24'h000000,data2} 68:{24'h0
STM8串口初始化寄存器配置
//库函数配置 UART1_DeInit(); UART1_Init((u32)1000000, UART1_WORDLENGTH_8D, UART1_STOPBITS_1, \ UART1_PARITY_NO , UART1_SYNCMODE_CLOCK_DISABLE , UART1_MODE_TXRX_ENABLE); UART1_ITConfig(UART1_IT_RXNE_OR,ENABLE ); UART1_Cmd(ENABLE ); //寄存器配置 //UART1->CR1 |=
摄像头驱动OV7725学习笔记连载(二):0V7725 SCCB时序的实现之寄存器配置
上一篇博客主要介绍了OV7725的电气特性以及SCCB接口的时序和输出一帧图像的时序图以及数据的拼接.输出一帧图像与输出时钟PCLK有关. 上图是OV7725实现的整体框架,有点丑.FPGA描述SCCB时序,完成OV7725的配置,配置完成之后,OV7725 sensor输出PCLK和href,vsync以及cmos_data信号.经过格式的转换单元,将格式转换后的数据送给SDRAM单元,最终实现VGA/LCD/上位机显示. 之前已经提及过,SCCB接口主要实现sensor内部各种寄存器的配置,
stm8s + si4463 寄存器配置
/***********************************************函 数: main功 能: 程序入口输 入: /输 出: /描 述: /***********************************************/void main(void){ u8 i,length; delay_ms(1000); CLOCK_init();//时钟8分频 2M RC delay_ms(200); InitializeSystem(); if
与或左移右移操作在ARM寄存器配置中的作用
逻辑运算: 与运算&:与0清零 清零用与运算 或运算 |:或1置一 置一用或运算 异或 ^:不同为1 /*****单个寄存器清零置一******************************************************** int a =0x00000000; int b = 0xffffffff; //默认是32位寄存器 1.让第三位置一 a | 0x8 ==> a = a | (0x1<<3) 2.让第三位清零 1111 111
STM32的操作过程,寄存器配置与调试过程(转载)
很多学习stm32的,为什么学习stm32他也不知道,我们所知道的就是各个论坛讨论stm32的很多,而我们很多人之所以学习stm32是很多的淘宝卖家做了大量的图片文字宣传,于是我们经不住诱惑就买了板子,然后我们就开始了我们的学习之旅. 在淘宝卖家的眼里有着齐全的入门资料是板子的最大的卖点,于是当我们拿到开发板的时候,我们感觉我们永远不能和别人说自己熟悉stm32,因为脱离了网络的资料我们什么都做不了,这是我们最害怕的事情. 今天我就就像在这里记录下自己一无所有建立stm32工程的过程,是我自己的
AD9361寄存器配置顺序,循环模式,自收自发
:] cmd_data; :] index; begin case(index) 'h000,8'h00};//set spi -- 'h3df,8'h01};//set init -- 'h037,8'h00};//readPartNumbereadPartNumber //ad9361——ID -- 'h295,8'h14};//Power up XO path (Default) // no find --||-- 'h2A6,8'h0E};//Enable Master Bias //主
USB2.0学习笔记连载(十八):keil实现寄存器的配置及相关函数讲解(二)
其实之前也有提及过,Cypress公司提供的官方文件和应用手册真的可以解决很多问题.做的也很人性化,操作也及其简单,几乎只要在 TD_int()里面配置一些常用的参数即可,其他都可以不用操作. 作为一个常用查询手册吧!!!! 注意一点:在应用手册中<AN65209>中提及到,full和empty标志是针对所有缓冲区而言的,比如双缓冲区,out模式时,只发送一个数据包过来,这是不会使能full信号,只有当第二个数据包过来时,才会使能full信号. 还有一点需要注意的是,对于缓冲区若是设置为自动模
如何访问pcie整个4k的配置空间
目前用于访问PCIe配置空间寄存器的方法需要追溯到原始的PCI规范.为了发起PCI总线配置周期,Intel实现的PCI规范使用IO空间的CF8h和CFCh来分别作为索引和数据寄存器,这种方法可以访问所有PCI设备的255 bytes配置寄存器.Intel Chipsets目前仍然支持这种访问PCI配置空间的方法. PCIe规范在PCI规范的基础上,将配置空间扩展到4K bytes,至于为什么扩展到4K,具体可以参考PCIe规范,这些功能都需要配置空间.原来的CF8/CFC方法仍然可以访问所有PC
DSP/BIOS使用之初窥门径——滴答时钟及烧写Flash
操作平台和环境 DSP型号:TMS320C6713 仿真器:XDS510PLUS Flash型号:AM29LV800BT或AM29LV800BT都试过(一般接口一样,区别不大) RAM型号:MT48LC16M16A2P(注意16位数据线接口) DSP/BIOS库:V5.31.02 CSL库:(假定读者已经会使用了) 边写LED程序.边聊聊操作系统的滴答时钟 在上篇文章DSP-BIOS使用入门的基础上,这里用用DSP/BIOS操作系统的CLK和PRD模块.这两个模块涉及到硬件定时器.我们使用仿真器
怎样訪问pcie整个4k的配置空间
眼下用于訪问PCIe配置空间寄存器的方法须要追溯到原始的PCI规范. 为了发起PCI总线配置周期,Intel实现的PCI规范使用IO空间的CF8h和CFCh来分别作为索引和数据寄存器,这样的方法能够訪问全部PCI设备的255 bytes配置寄存器.Intel Chipsets眼下仍然支持这样的訪问PCI配置空间的方法. PCIe规范在PCI规范的基础上,将配置空间扩展到4K bytes,至于为什么扩展到4K,详细能够參考PCIe规范,这些功能都须要配置空间.原来的CF8/CFC方法仍然能够訪问全
DSP EPWM学习笔记2 - EPWM相关寄存器设置问题解析
DSP EPWM学习笔记2 - EPWM相关寄存器设置问题解析 彭会锋 本篇主要针对不太熟悉的TZ 故障捕获 和 DB 死区产生两个子模块进行学习研究 感觉TI的寄存器命名还是有一定规律可循的 SEL主要用于选择位 CTL主要用于控制位 EINT主要用于使能中断 FLG是标志查询位 CLR中断标志清除位 FRC 软件强制使能设置位 1 TZ 故障捕获子模块 TZ子模块可以工作在Cycle-by-Cycle.One-Shot两种模式下,这两种状态的区别是: one-shot是永久起作用的,恢复它只
TFT LCD控制显示总结(硬件概念、初始化相关配置)(转)
源地址:http://nervfzb.blog.163.com/blog/static/314813992011215105432369/ TFT LCD是嵌入式中比较常用的显示器,S3C2440/S3C2410都提供了接口进行支持.这里总结下其接口的相关特性. TFT LCD硬件需要的控制信号: 信号名称 描述 VSYNC 垂直同步信号 HSYNC 水平同步信号 HCLK 像素时钟信号 VD[23:0] 数据信号(TFT LCD的数据接口还有串行形式,这里的是并行方式的) LEND 行结束信号
LSI SAS 3008配置操作
配置 LSI SAS 3008 介绍LSISAS3008的配置操作. 4.1 登录CU界面 介绍登录LSISAS3008的CU配置界面的方法. 4.2 创建RAID 介绍在LSISAS3008扣卡上创建RAID的操作方法. 4.3 配置RAID 介绍RAID扣卡的常用操作. 4.1 登录CU界面 介绍登录LSISAS3008的CU配置界面的方法. 操作场景 LSI Logic SAS BIOS CU配置工具(以下简称CU)用于配置.管理LSISAS3008控制器.CU已固化在控制器的BIOS中
LSI SAS 2308配置操作
介绍LSISAS2308的配置操作 3.1 登录CU界面 介绍登录LSISAS2308的CU配置界面的方法. 3.2 创建RAID 介绍在LSISAS2308扣卡上创建RAID的操作方法. 3.3 配置RAID 介绍RAID扣卡的常用操作. 3.1 登录CU界面 介绍登录LSISAS2308的CU配置界面的方法. 操作场景 LSI Logic SAS BIOS CU配置工具(以下简称CU)用于配置.管理LSISAS2308控制器.CU已固化在控制器的BIOS中,可独立于操作系统运行,使配置和管
M4——GPIO配置
1.GPIO 简述: 通用输入输出(General Purpose Input Output)的简称,就是芯片引脚可以通过他们输出高电平或者低电平,也可以通过他们读取引脚的电平状态. 以STM32F407ZGT6芯片为例(后面都是以这种芯片为例),这种芯片共有112个I/O口,共7组,每组16个引脚(0~15),可以通过配置寄存器来确定某个引脚用于输入.输出还是其他特殊功能.想要什么功能,使用之前先配置,其中默认为输入浮空模式. 在一个芯片内部,CPU通过地址来设别片内外设.分配给每个硬件外设的
HI3531的DDR3配置流程
DDR3 初始化配置流程 系统上电之后,必须先完成DDR3 SDRAM 的初始化操作,系统才能访问DDR3 SDRAM.在进行初始化之前需要注意以下几点: 对DDR3 SDRAM 进行上电操作时,需要遵循JEDEC 标准.即先提供VDD,然 后提供VDDQ,最后提供VREF 和VTT. 该初始化过程需要在系统进入NORMAL 模式后进行. 在DDRC 32bit 模式下,假设存储空间由两片容量为1Gbit,数据总线位宽为16bit 的 DDR3 SDRAM 构成,DDRC 的初始化步骤如下:
Python批量修改寄存器的值
在写代码过程中,我们修改代码中寄存器的值,但是有时寄存器的数据较多,手动修改容易出现错误而且花费的时间长 这是一段寄存器的配置值: 0x00, 0x34 0x35, 0x25 0x10, 0xd4 0xf5, 0xa5 0x00, 0x34 0x3a, 0xff 0x00, 0x00 0x34, 0x25 这是要修改代码的值: {Data, 0x21, 0x23}, {Data, 0x34, 0x23}, {Data, 0xd1, 0x2a}, {Data, 0xe1, 0
FPGA配置OV5640摄像头及RGB图像数据采集
本文设计思想采用明德扬至简设计法.在做摄像头数据采集处理之前,需要配置OV5640传感器内部寄存器使其按要求正常工作,详细内容请参见<OV5640自动对焦照相模组应用指南>.首先要关注OV5640的上电时序: 主控制器控制RESET PWDN两个信号按上电时序要求变化,之后允许ov_config模块配置内部寄存器.这里始终将PWDN拉低.实验中将摄像头分辨率设置为720p,即1280*720 ,帧率为30fps,图像输出格式是RGB565.此时摄像头输入时钟XCLK频率24MHz,输出像素时钟
热门专题
Ubuntu sshpass sudo执行命令
vue.js快跑读后感
linux下安装pcapy
qt程序opencv异常结束crashed
finereport 填报项目负责人
Oracle Linux6 yum源配置iso
vs2019动态链接库导出类
unity gc destroy但是还有引用
双连杆机械臂的运动学正逆解及速度正逆解
k8s 集群多节点 calico指定网卡
uploadify上传Cookie会消失
freetype2编译
linux local_time 修改时区
rd 授权 添加凭证 2016
iOS MVC里面, View怎么通知到Model
windows oracle 负载均衡
中标麒麟安装qt环境
handsontable获取存在的数据
deepfacelab预览图代表
TSL1.0和TSL1.2区别