首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
Bluestein算法 循环卷积
2024-09-03
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 写在前面 一些约定 循环卷积 DFT卷积的本质 Bluestein's Algorithm 例题 分治FFT 例题 FFT的弱常数优化 复杂算式中减少FFT次数 例题 利用循环卷积 小范围暴力 例题 快速幂乘法次数的优化 FFT的强常数优化 DF
[POJ 2821]TN's Kindom III(任意长度循环卷积的Bluestein算法)
[POJ 2821]TN's Kindom III(任意长度循环卷积的Bluestein算法) 题面 给出两个长度为\(n\)的序列\(B,C\),已知\(A\)和\(B\)的循环卷积为\(C\),求\(A\). \(n<2^{17}\) 分析 Bluestein算法的模板题,可以参考这篇博客 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 代码 #include<iostream> #include<cs
bluestein算法
我们熟知的FFT算法实际上是将一个多项式在2n个单位根处展开,将其点值对应相乘,并进行逆变换.然而,由于单位根具有"旋转"的特征(即$w_{m}^{j}=w_{m}^{j+m}$),若多项式次数大于二分之长度,FFT将进行一次长度为2n的循环卷积.bluestein的算法是为了解决在任意长度上的循环卷积问题. 我们知道,任何一个n次多项式都可以被n+1个点值进行表示,因此如果我们选取所有形如$w_{n+1}^{i}$的单位根并带入多项式,进行类似于FFT的变化(这里没有证明),理应得到
[codeforces 901E] Cyclic Cipher 循环卷积-Bluestein's Algorithm
题目大意: 传送门 给两个数列${B_i}.{C_i}$,长度均为$n$,且${B_i}$循环移位线性无关,即不存在一组系数${X_i}$使得对于所有的$k$均有$\sum_{i=0}^{n-1} X_i B_{k-i \mod n} =0$. 已知$C$是由$B$与$A$构造得到: (搬原图). 求所有合法的$A$序列. 题解: 首先把式子稍加化简会得到: 显然是个差分式,然后就会得到以下两种结果(以下$B_{i}$均为$B_{i\mod n}$): 问题是,这两个式子都是对的吗? 显然不是
算法系列:FFT 002
转载自http://blog.jobbole.com/58246/ 快速傅里叶变换(Fast Fourier Transform)是信号处理与数据分析领域里最重要的算法之一.没有正规计算机科学课程背景的我,使用这个算法多年,但这周我却突然想起自己从没思考过为什么FFT能如此快速地计算离散傅里叶变换.我打开一本老旧的算法书,欣赏了JW Cooley 和 John Tukey 在1965年的文章中,以看似简单的计算技巧来讲解这个东西. 本文的目标是,深入Cooley-Tukey FFT 算法,解释
快速傅里叶变换(FFT)算法【详解】
快速傅里叶变换(Fast Fourier Transform)是信号处理与数据分析领域里最重要的算法之一.我打开一本老旧的算法书,欣赏了JW Cooley 和 John Tukey 在1965年的文章中,以看似简单的计算技巧来讲解这个东西. 本文的目标是,深入Cooley-Tukey FFT 算法,解释作为其根源的“对称性”,并以一些直观的python代码将其理论转变为实际.我希望这次研究能对这个算法的背景原理有更全面的认识. FFT(快速傅里叶变换)本身就是离散傅里叶变换(Discrete
Bluestein's Algorithm
网上很少有人提到,写的也很简单,事实上就是很简单... \(Bluestein's\ Algorithm\),用以解决任意长度\(DFT\). 考虑\(DFT\)的形式:\[\begin{aligned}y_k&=\sum_{i=0}^{n-1}a_i\omega_n^{ki}\\&=\sum_{i=0}^{n-1}a_i\omega_{2n}^{k^2+i^2-(k-i)^2}\\&=\omega_{2n}^{k^2}\sum_{i=0}^{n-1}a_i\omega_{2n}^
B树——算法导论(25)
B树 1. 简介 在之前我们学习了红黑树,今天再学习一种树--B树.它与红黑树有许多类似的地方,比如都是平衡搜索树,但它们在功能和结构上却有较大的差别. 从功能上看,B树是为磁盘或其他存储设备设计的,能够有效的降低磁盘的I/O操作数,因此我们经常看到有许多数据库系统使用B树或B树的变种来储存数据结构:从结构上看,B树的结点可以有很多孩子,从数个到数千个,这通常依赖于所使用的磁盘的单元特性. 如下图,给出了一棵简单的B树. 从图中我们可以发现,如果一个内部结点包含n个关键字,那么结点就有n+1个孩
分布式系列文章——Paxos算法原理与推导
Paxos算法在分布式领域具有非常重要的地位.但是Paxos算法有两个比较明显的缺点:1.难以理解 2.工程实现更难. 网上有很多讲解Paxos算法的文章,但是质量参差不齐.看了很多关于Paxos的资料后发现,学习Paxos最好的资料是论文<Paxos Made Simple>,其次是中.英文版维基百科对Paxos的介绍.本文试图带大家一步步揭开Paxos神秘的面纱. Paxos是什么 Paxos算法是基于消息传递且具有高度容错特性的一致性算法,是目前公认的解决分布式一致性问题最有效的算法之一
【Machine Learning】KNN算法虹膜图片识别
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚
红黑树——算法导论(15)
1. 什么是红黑树 (1) 简介 上一篇我们介绍了基本动态集合操作时间复杂度均为O(h)的二叉搜索树.但遗憾的是,只有当二叉搜索树高度较低时,这些集合操作才会较快:即当树的高度较高(甚至一种极端情况是树变成了1条链)时,这些集合操作并不比在链表上执行的快. 于是我们需要构建出一种"平衡"的二叉搜索树. 红黑树(red-black tree)正是其中的一种.它可以保证在最坏的情况下,基本集合操作的时间复杂度是O(lgn). (2) 性质 与普通二叉搜索树不
散列表(hash table)——算法导论(13)
1. 引言 许多应用都需要动态集合结构,它至少需要支持Insert,search和delete字典操作.散列表(hash table)是实现字典操作的一种有效的数据结构. 2. 直接寻址表 在介绍散列表之前,我们先介绍直接寻址表. 当关键字的全域U(关键字的范围)比较小时,直接寻址是一种简单而有效的技术.我们假设某应用要用到一个动态集合,其中每个元素的关键字都是取自于全域U={0,1,…,m-1},其中m不是一个很大的数.另外,假设每个元素的关键字都不同. 为表示动态集合,我们用一个数组,或称为
虚拟dom与diff算法 分析
好文集合: 深入浅出React(四):虚拟DOM Diff算法解析 全面理解虚拟DOM,实现虚拟DOM
简单有效的kmp算法
以前看过kmp算法,当时接触后总感觉好深奥啊,抱着数据结构的数啃了一中午,最终才大致看懂,后来提起kmp也只剩下“奥,它是做模式匹配的”这点干货.最近有空,翻出来算法导论看看,原来就是这么简单(先不说程序实现,思想很简单). 模式匹配的经典应用:从一个字符串中找到模式字串的位置.如“abcdef”中“cde”出现在原串第三个位置.从基础看起 朴素的模式匹配算法 A:abcdefg B:cde 首先B从A的第一位开始比较,B++==A++,如果全部成立,返回即可:如果不成立,跳出,从A的第二位开
神经网络、logistic回归等分类算法简单实现
最近在github上看到一个很有趣的项目,通过文本训练可以让计算机写出特定风格的文章,有人就专门写了一个小项目生成汪峰风格的歌词.看完后有一些自己的小想法,也想做一个玩儿一玩儿.用到的原理是深度学习里的循环神经网络,无奈理论太艰深,只能从头开始开始慢慢看,因此产生写一个项目的想法,把机器学习和深度学习里关于分类的算法整理一下,按照原理写一些demo,方便自己也方便其他人.项目地址:https://github.com/LiuRoy/classfication_demo,目前实现了逻辑回归和神经网
46张PPT讲述JVM体系结构、GC算法和调优
本PPT从JVM体系结构概述.GC算法.Hotspot内存管理.Hotspot垃圾回收器.调优和监控工具六大方面进行讲述.(内嵌iframe,建议使用电脑浏览) 好东西当然要分享,PPT已上传可供下载(点此下载),另外良心推荐阅读<深入理解Java虚拟机JVM高级特性与最佳实践.pdf>(点此下载).
【C#代码实战】群蚁算法理论与实践全攻略——旅行商等路径优化问题的新方法
若干年前读研的时候,学院有一个教授,专门做群蚁算法的,很厉害,偶尔了解了一点点.感觉也是生物智能的一个体现,和遗传算法.神经网络有异曲同工之妙.只不过当时没有实际需求学习,所以没去研究.最近有一个这样的任务,所以就好好把基础研究了一下,驱动式学习,目标明确,所以还是比较快去接受和理解,然后写代码实现就好了.今天就带领大家走近TSP问题以及群蚁算法. 机器学习目录:[目录]数据挖掘与机器学习相关算法文章总目录 本文原文地址:群蚁算法理论与实践全攻略——旅行商等路径优化问题的新方法 1.关于旅行商(
Android数据加密之SHA安全散列算法
前言: 对于SHA安全散列算法,以前没怎么使用过,仅仅是停留在听说过的阶段,今天在看图片缓存框架Glide源码时发现其缓存的Key采用的不是MD5加密算法,而是SHA-256加密算法,这才勾起了我的好奇心,所以趁着晚上没啥事,来学习一下. 其他几种加密方式: Android数据加密之Rsa加密 Android数据加密之Aes加密 Android数据加密之Des加密 Android数据加密之MD5加密 Android数据加密之Base64编码算法 Android数据加密之异或加密算法 SHA加密算
Android数据加密之Base64编码算法
前言: 前面学习总结了平时开发中遇见的各种数据加密方式,最终都会对加密后的二进制数据进行Base64编码,起到一种二次加密的效果,其实呢Base64从严格意义上来说的话不是一种加密算法,而是一种编码算法,为何要使用Base64编码呢?它解决了什么问题?这也是本文探讨的东西? 其他几种加密方式: Android数据加密之Rsa加密 Android数据加密之Aes加密 Android数据加密之Des加密 Android数据加密之MD5加密 Android数据加密之Base64编码算法 Android
JavaScript实现常用的排序算法
▓▓▓▓▓▓ 大致介绍 由于最近要考试复习,所以学习js的时间少了 -_-||,考试完还会继续的努力学习,这次用原生的JavaScript实现以前学习的常用的排序算法,有冒泡排序.快速排序.直接插入排序.希尔排序.直接选择排序 ▓▓▓▓▓▓ 交换排序 交换排序是一类在排序过程中借助于交换操作来完成排序的方法,基本思想是两两比较排序记录的关键字,如果发现两个关键字逆序,则将两个记录位置互换,重复此过程,直到该排序列中所有关键字都有序为止,接下来介绍交换排序中常见的冒泡排序和快速排序 ▓▓▓▓▓▓
热门专题
aggregationBuilder多索引查询
python mastcard信用卡支付sdk
echarts画中国地图
webdriver.Remote 的参数如何设置
mybatis打印 log
外网怎么访问web项目
visual studio 2019试用期过了怎么办
矩阵行向量相似度计算
css fliex 间距
labview如何生成vipm工具包
微信js sdk文档
python CBC模式加密
labelimg标注原理
debian无法启动chrome
spreadJs 添加索引
windows vue nginx 同一台服务器做负载均衡
WebService暴漏
eclipse怎么改project路径
servletb不用from
ubuntu 16.04 DBOW3 安装