首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
boosting减少bias
2024-11-04
模型融合---为什么说bagging是减少variance,而boosting是减少bias?
1.bagging减少variance Bagging对样本重采样,对每一重采样得到的子样本集训练一个模型,最后取平均.由于子样本集的相似性以及使用的是同种模型,因此各模型有近似相等的bias和variance(事实上,各模型的分布也近似相同,但不独立),所以bagging后的bias和单个子模型的接近,一般来说不能显著降低bias. 若各模型独立,则 若各模型完全相等,则 此时不会降低variance.bagging方法得到的各子模型是有一定相关性的,属于上面两个极端状况的中间态,因此可以一定
【思考】为什么说Bagging减少variance,Boosting减少bias?(转载)
具体讨论可见于此知乎问题,有很多种理解方向,甚至这一个命题可能本来就不成立!
L2R 一:基础知识介绍
一.背景 l2r可以说是搜索推荐里面很常用的知识了,一直处于一知半解的地步,今天开个博客准备把这些零散的东西系统性整理好,一版就粗糙点了. 二.粗概 前段时间的项目主要和搜索引擎相关,记录下搜索引擎的主题思路,大致就是:召回 --> 粗排 ---> 精排. 一般情况下,召回和粗排会并在一起,例如LUCENE.召回的方法有很多种,常见的有:BM25,TF-IDF等,但不限于这些,用LDA也未尝不可.因为这一阶段是海选,涉及大量数据计算,为了保证时效,这部分的算法一般会选用快捷有效且相对简单的,重
Bagging和Boosting的区别(面试准备)
Baggging 和Boosting都是模型融合的方法,可以将弱分类器融合之后形成一个强分类器,而且融合之后的效果会比最好的弱分类器更好. Bagging: 先介绍Bagging方法: Bagging即套袋法,其算法过程如下: 从原始样本集中抽取训练集.每轮从原始样本集中使用Bootstraping的方法抽取n个训练样本(在训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中).共进行k轮抽取,得到k个训练集.(k个训练集之间是相互独立的) 每次使用一个训练集得到一个模型,k个训练
ML中Boosting和Bagging的比較
说到ML中Boosting和Bagging,他们属于的是ML中的集成学习,集成学习法(Ensemble Learning) ① 将多个分类方法聚集在一起.以提高分类的准确率. (这些算法能够是不同的算法,也能够是同样的算法.) ② 集成学习法由训练数据构建一组基分类器,然后通过对每一个基分类器的预測进行投票来进行分类 ③ 严格来说,集成学习并不算是一种分类器,而是一种分类器结合的方法. ④ 通常一个集成分类器的分类性能会好于单个分类器 ⑤ 假设把单个分类器比作一个决策者的话,集成学习的
bagging,random forest,boosting(adaboost、GBDT),XGBoost小结
Bagging 从原始样本集中抽取训练集.每轮从原始样本集中使用Bootstraping(有放回)的方法抽取n个训练样本(在训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中).共进行k轮抽取,得到k个训练集.(我们这里假设k个训练集之间是相互独立的,事实上不是完全独立) 每次使用一个训练集得到一个模型,k个训练集共得到k个模型.但是是同种模型.(注:k个训练集虽然有重合不完全独立,训练出来的模型因为是同种模型也是不完全独立.这里并没有具体的分类算法或回归方法,我们可以根据具体问
[白话解析] 通俗解析集成学习之bagging,boosting & 随机森林
[白话解析] 通俗解析集成学习之bagging,boosting & 随机森林 0x00 摘要 本文将尽量使用通俗易懂的方式,尽可能不涉及数学公式,而是从整体的思路上来看,运用感性直觉的思考来解释 集成学习.并且从名著中延伸了具体应用场景来帮助大家深入这个概念. 在机器学习过程中,会遇到很多晦涩的概念,相关数学公式很多,大家理解起来很有困难.遇到类似情况,我们应该多从直觉角度入手思考,用类比或者举例来附会,这样往往会有更好的效果. 我在讲解论述过程中给自己的要求是:在生活中或者名著中找一个例子,
Bagging和Boosting的介绍及对比
"团结就是力量"这句老话很好地表达了机器学习领域中强大「集成方法」的基本思想.总的来说,许多机器学习竞赛(包括 Kaggle)中最优秀的解决方案所采用的集成方法都建立在一个这样的假设上:将多个模型组合在一起通常可以产生更强大的模型. 一.集成方法 集成(Ensemble)方法就是针对同一任务,将多个或多种分类器进行融合,从而提高整体模型的泛化能力.对于一个复杂任务,将多个模型进行适当地综合所得出的判断,通常要比任何一个单独模型的判读好.也就是我们常说的"三个臭皮匠,顶过诸葛亮
【十大经典数据挖掘算法】AdaBoost
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 集成学习 集成学习(ensemble learning)通过组合多个基分类器(base classifier)来完成学习任务,颇有点"三个臭皮匠顶个诸葛亮"的意味.基分类器一般采用的是弱可学习(weakly learnable)分类器,通过集成学习,组合成一个强可学习(strongly learnable)分类器.所谓
使用sklearn进行集成学习——理论
系列 <使用sklearn进行集成学习——理论> <使用sklearn进行集成学习——实践> 目录 1 前言2 集成学习是什么?3 偏差和方差 3.1 模型的偏差和方差是什么? 3.2 bagging的偏差和方差 3.3 boosting的偏差和方差 3.4 模型的独立性 3.5 小结4 Gradient Boosting 4.1 拟合残差 4.2 拟合反向梯度 4.2.1 契机:引入损失函数 4.2.2 难题一:任意损失函数的最优化 4.2.3 难题二:无法对测试样本计算反向梯度
[转]使用sklearn进行集成学习——理论
转:http://www.cnblogs.com/jasonfreak/p/5657196.html 目录 1 前言2 集成学习是什么?3 偏差和方差 3.1 模型的偏差和方差是什么? 3.2 bagging的偏差和方差 3.3 boosting的偏差和方差 3.4 模型的独立性 3.5 小结4 Gradient Boosting 4.1 拟合残差 4.2 拟合反向梯度 4.2.1 契机:引入损失函数 4.2.2 难题一:任意损失函数的最优化 4.2.3 难题二:无法对测试样本计算反向梯度 4.
算法工程师<机器学习基础>
<机器学习基础> 逻辑回归,SVM,决策树 1.逻辑回归和SVM的区别是什么?各适用于解决什么问题? https://www.zhihu.com/question/24904422 2.Linear SVM 和 线性回归 有什么异同? 答案:https://www.zhihu.com/question/26768865 基础知识:https://blog.csdn.net/ChangHengyi/article/details/80577318 3.支持向量机属于神经网络范畴吗? https:
决策树(中)-集成学习、RF、AdaBoost、Boost Tree、GBDT
参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读): 1. https://zhuanlan.zhihu.com/p/86263786 2.https://blog.csdn.net/liuy9803/article/details/80598652 3.https://blog.csdn.net/perfect1t/article/details/83684995 4.GBDT算法原理以及实例理解(!!) 5.Adaboost算法原理分析和实例+代码(简明易懂)(!!) 目录 1.
AI面试刷题版
(1)代码题(leetcode类型),主要考察数据结构和基础算法,以及代码基本功 虽然这部分跟机器学习,深度学习关系不大,但也是面试的重中之重.基本每家公司的面试都问了大量的算法题和代码题,即使是商汤.face++这样的深度学习公司,考察这部分的时间也占到了我很多轮面试的60%甚至70%以上.我去face++面试的时候,面试官是residual net,shuffle net的作者:但他们的面试中,写代码题依旧是主要的部分. 大部分题目都不难,基本是leetcode medium的难度.但是要求
AI涉及到数学的一些面试题汇总
[LeetCode] Maximum Product Subarray的4种解法 leetcode每日解题思路 221 Maximal Square LeetCode:Subsets I II (2)数学题或者"智力"题. 如果一个女生说,她集齐了十二个星座的前男友,我们应该如何估计她前男友的数量? 如何理解矩阵的「秩」?: 「秩」是图像经过矩阵变换之后的空间维度 「秩」是列空间的维度 矩阵低秩的意义?:低秩表征着一种冗余程度.秩越低表示数据冗余性越大,因为用很少几个基就可以表达所有数
[Sklearn] Linear regression models to fit noisy data
Ref: [Link] sklearn各种回归和预测[各线性模型对噪声的反应] Ref: Linear Regression 实战[循序渐进思考过程] Ref: simple linear regression详解[涉及到假设检验] 引申问题,如何拟合sin数据呢? 如果不引入sin这样周期函数,可以使用:scikit learn 高斯过程回归[有官方例子] 参考:[Bayesian] “我是bayesian我怕谁”系列 - Gaussian Process 牛津讲义:An Introducti
Ensemble Learning 之 Bagging 与 Random Forest
Bagging 全称是 Boostrap Aggregation,是除 Boosting 之外另一种集成学习的方式,之前在已经介绍过关与 Ensemble Learning 的内容与评价标准,其中“多样性”体现在应尽可能的增加基学习器的差别.Bagging 主要关注增大 “多样性”,他的做法是这样的,给定训练集 $D$ ,对 $D$ 进行 Bootstrap 采样,得到若干个不同的子集,Bootstrap 会确保各个子集有一定的交集,分别在各个子集上训练得到基分类器并且组合起来共同进行决策. B
《Machine Learning Yearing》读书笔记
——深度学习的建模.调参思路整合. 写在前面 最近偶尔从师兄那里获取到了吴恩达教授的新书<Machine Learning Yearing>(手稿),该书主要分享了神经网络建模.训练.调节参数时所需要的一些技巧和经验.我在之前的一些深度学习项目中也遇到过模型优化,参数调节之类的问题,由于当时缺少系统化的解决方案,仅仅依靠感觉瞎蒙乱碰.虽然有时也能获得效果不错的网络模型,但对于该模型是否已到达最佳性能.该模型是否能适配更泛化的数据等问题心理没底.通过阅读这本教材,对于数据集的获取.划分:训练模型
PRML读书会第十四章 Combining Models(committees,Boosting,AdaBoost,决策树,条件混合模型)
主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:57:18 大家好,今天我们讲一下第14章combining models,这一章是联合模型,通过将多个模型以某种形式结合起来,可以获得比单个模型更好的预测效果.包括这几部分:committees, 训练多个不同的模型,取其平均值作为最终预测值. boosting: 是committees的特殊形式,顺序训练L个模型,每个模型的训练依赖前一个模型的训练结果.决策树:不同模型负责输入变量的不同区间的预测,每个样本选择
Ensemble Learning 之 Gradient Boosting 与 GBDT
之前一篇写了关于基于权重的 Boosting 方法 Adaboost,本文主要讲述 Boosting 的另一种形式 Gradient Boosting ,在 Adaboost 中样本权重随着分类正确与否而在下一次迭代中动态发生改变:Gradient Boosting 并没有样本权重的概念,它也采用 Additive Model ,每次迭代时,用损失函数刻画目标值与当前模型输出的差异,损失函数的负梯度则可以近似代表目标值与当前输出的残差,本次迭代产生的模型拟合该残差建立基学习器,然后加到整体模型即
热门专题
redis-dump导出入导出某个key的值
msp和p3o的区别
linux 启动sql server服务
hi igmp 设置
笔记本电脑ps/2标准键盘设备超时
hammer 手势库
loopback 如何映射es的index
ROS srv文件作用
linux删除驱动.ko
sqlalchemy 定义类 备注
那些样式表可以实现元素相对于父元素水平居中
laravel 引入视图顶部文件
echarts 国际化
express 设置cook
salesforce sharing rule 上限扩大
.net c# 是真的强大
python 处理 百度 返回
idea 2019.3.3激活码
松下纱荣子破坏版演出在线观看
单分区装ubuntu