首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
CPU为甚需要虚拟地址
2024-10-23
cpu为什么使用虚拟地址到物理地址的空间映射,解决了什么样的问题?
当处理器读或写入内存位置时,它会使用虚拟地址.作为读或写操作的一部分,处理器将虚拟地址转换为物理地址.通过虚拟地址访问内存有以下优势: 程序可以使用一系列相邻的虚拟地址来访问物理内存中不相邻的大内存缓冲区. 程序可以使用一系列虚拟地址来访问大于可用物理内存的内存缓冲区.当物理内存的供应量变小时,内存管理器会将物理内存页(通常大小为 4 KB)保存到磁盘文件.数据或代码页会根据需要在物理内存与磁盘之间移动. 不同进程使用的虚拟地址彼此隔离.一个进程中的代码无法更改正在由另一进程使用的物理内存. 与
MIT6.828 虚拟地址转化为物理地址——二级分页
这个分页,主要是在mit6.828的lab2的背景下来说的. Mit6.828 Lab2:http://pdos.csail.mit.edu/6.828/2014/labs/lab2/ lab2主要讲虚拟内存->物理内存的变换,通过一定的函数来实现软件MMU的部分. 整个地址转化的过程如下图所示: 首先,明确一点,在程序里面的所有地址,都是虚拟地址,程序里面是不会出现物理地址的,就算是物理地址,CPU也会把它当做虚拟地址,通过MMU转化为物理地址. 通过上面的图,可以知道,在系统中,CPU得到一
虚拟地址和物理地址(MMU)以及cache
最近非常忙,博客很乱也没有更新,这里随便记录点东西,周末有空整理下. cache是一个与CPU很近的高速存储器, 作用:提高内存的访问读写速度 cache属性是指对这部分虚拟地址的读写是使用cache功能的,即是对这部分的虚拟内存是cacheable的 uncache不使用cache对这部分虚拟地址进行读写 区别:虚拟内存读写时是否使用到cache cache:一个和CPU很近的高速存储器,用来存储一些不是经常变化的数据,提高速度.在经常改变的数据的时候不适合启用,否则效率会更低比如我们
x64内核内存空间结构
0x00 前言 本文主要是讨论Windows 7 x64下的内核虚拟地址空间的结构,可以利用WiinDBG调试的扩展命令"!CMKD.kvas"来显示x64下的内核虚拟地址空间的整体布局.了解内核的地址布局在某些情况下是很有的,比如说在研究New Blue Pill的源码和虚拟化的时候. 0x01 基本结构 X64的CPU的地址为64位,但实际上只支持48位的虚拟地址空间供软件使用.虚拟地址的高16位在用户模式下总是被设置为0000,而在内核模式下全置为FFFF. 因此用户模式的地址空
内存管理单元(MMU)和协处理器CP15介绍(转)
内存管理单元(MMU)和协处理器CP15介绍内存管理单元(MMU)介绍嵌入式系统中,存储系统差别很大,可包含多种类型的存储器件,如FLASH,SRAM,SDRAM,ROM等,这些不同类型的存储器件速度和宽度等各不相同:在访问存储单元时,可能采取平板式的地址映射机制对其操作,或需要使用虚拟地址对其进行读写:系统中,需引入存储保护机制,增强系统的安全性.为适应如此复杂的存储体系要求,ARM处理器中引入了存储管理单元来管理存储系统.一内存管理单元(MMU)概述在ARM存储系统中,使用MMU实现虚拟地址
Linux第14周学习笔记
虚拟存储器 虚拟存储器是硬件异常.硬件地址翻译.主存.磁盘文件和内核软件的完美交互. 虚拟存储器的特点: 中心的 强大的 危险的 物理和虚拟寻址 计算机系统的主存被组织成一个由M个连续的字节大小的单元组成的数据 每个字节都有一个唯一的物理地址 第一个字节的地址为0,接下来的抵制依次+1 这种方式称为物理寻址 虚拟寻址时,CPU通过生成一个虚拟地址来访问主存,该地址被送到存储器之前先转换成适当的物理地址.该任务叫做地址翻译. 地址需要CPU硬件和操作系统之间紧密合作 存储器管理单元(在CPU上)利
Linux就这个范儿 第15章 七种武器 linux 同步IO: sync、fsync与fdatasync Linux中的内存大页面huge page/large page David Cutler Linux读写内存数据的三种方式
Linux就这个范儿 第15章 七种武器 linux 同步IO: sync.fsync与fdatasync Linux中的内存大页面huge page/large page David Cutler Linux读写内存数据的三种方式 台湾作家林清玄在接受记者采访的时候,如此评价自己30多年写作生涯:“第一个十年我才华横溢,‘贼光闪现’,令周边黯然失色:第二个十年,我终于‘宝光现形’,不再去抢风头,反而与身边的美丽相得益彰:进入第三个十年,繁华落尽见真醇,我进入了‘醇光初现’的阶段,真正
Linux Hugepage ,AMM及 USE_LARGE_PAGES for oracle 11G(转载)
1. Hugepage基本概念 系统进程是通过虚拟地址访问内存,但是CPU必须把它转换成物理内存地址才能真正访问内存.为了提高这个转换效率,CPU会缓存最近的“虚拟内存地址和物理内存地址”的映射关系,并保存在一个由CPU维护的映射表(page table)中. page table(页表)是操作系统上的虚拟内存系统的数据结构模型,用于存储虚拟地址与物理地址的对应关系.当我们访问内存时,首先访问"page table",然后Linux再通过"page table
【转】TLB(Translation Lookaside Buffers,TLB)的作用
原文网址:http://sdnydubing.blog.163.com/blog/static/137470570201122810503396/ 从虚拟地址到物理地址的转换过程可知:使用一级页表进行地址转换时,每次读/写数据需要访问两次内存,第一次访问一级页表获得物理地址,第二次才是真正的读/写数据:使用两级页表时,每次读/写数据需要访问三次内存,访问两次页表(一级页表和二级页表)获得物理地址,第三次才是真正的读/写数据. 上述的地址转换过程打打降低了CPU的性能,有没有办法改进呢?程序执行过
[CSAPP笔记][第九章虚拟存储器][吐血1500行]
9.虚拟存储器 为了更加有效地管理存储器且少出错,现代系统提供了对主存的抽象概念,叫做虚拟存储器(VM). 虚拟存储器是硬件异常,硬件地址翻译,主存,磁盘文件和内核软件的完美交互. 为每个进程提供一个大的,一致的和 私有的地址空间. 提供了3个重要能力. 将主存看成磁盘地址空间的高速缓存. 只保留了活动区域,并根据需要在磁盘和主存间来回传送数据,高效使用主存. 为每个进程提供一致的地址空间 简化存储器管理 保护了每个进程的地址空间不被其他进程破坏. 程序员为什么要理解它? 虚拟存储器是中心的.
转 s3c2440硬件学习----内存管理单元MMU
本篇基本是韦东山书上的 一.内存管理单元MMU介绍 内存管理单元简称MMU,它负责虚拟地址到物理地址的映射,并提供硬件机制的内存访问权限检查.MMU使得每个用户进程拥有自己独立的地址空间,并通过内存访问权限的检查保护每个进程所用的内存不被其他进程破坏. 重点就在于地址映射:页表的结构与建立.映射的过程. 1.S3C2440 MMU地址变换过程 1)地址的分类一个程序在运行之前,没有必要全部装入内存,仅需要将那些要运行的部分先装入内存,其余部分在用到时从磁盘载入,当内存不足时,再将暂时不用的部分
内核知识第八讲,PDE,PTE,页目录表,页表的内存管理
内核知识第八讲,PDE,PTE,页目录表,页表的内存管理 一丶查看GDT表. 我们通过WinDbg + 虚拟机可以进行双机调试.调试一下看下GDT表 我们知道,GDT表中.存储的是存储段信息. 保存了一系列的段和内存的属性. 但是微软并没有使用. 我们可以通过ring3的段寄存器. 当作GDT表的下标.进行查表. 查询GDT表. 例如我们用OD随便打开一个ring3的exe,然后看下段和虚拟地址.: 虚拟地址: 0040256f 段选择子: cs:1B 那么此时段选择字当下表.虚拟地址当作偏移
Linux传统Huge Pages与Transparent Huge Pages再次学习总结
Linux下的大页分为两种类型:标准大页(Huge Pages)和透明大页(Transparent Huge Pages).Huge Pages有时候也翻译成大页/标准大页/传统大页,它们都是Huge Pages的不同中文翻译名而已,顺带提一下这个,免得有人被这些名词给混淆.误导了.Huge Pages是从Linux Kernel 2.6后被引入的.目的是使用更大的内存页面(memory page size) 以适应越来越大的系统内存,让操作系统可以支持现代硬件架构的大页面容量功能.透明大页
20165223《信息安全系统设计基础》第九周学习总结 & 第八周课上测试
目录 [第九周学习总结] 教材内容总结 [第八周课上测试] (一)求命令行传入整数参数的和 (二)练习Y86-64模拟器汇编 (三)基于socket实现daytime(13)服务器和客户端 参考资料 第九周学习总结 课堂内容总结 (一)学习目标 理解虚拟存储器的概念和作用 理解地址翻译的概念 理解存储器映射 掌握动态存储器分配的方法 理解垃圾收集的概念 了解C语言中与存储器有关的错误 (二)学习内容 (1)虚拟存储器 概念:虚拟存储器,又称虚拟内存(VM),是对主存的抽象概念 能力:①高效使用主
Linux内核内存管理架构
内存管理子系统可能是linux内核中最为复杂的一个子系统,其支持的功能需求众多,如页面映射.页面分配.页面回收.页面交换.冷热页面.紧急页面.页面碎片管理.页面缓存.页面统计等,而且对性能也有很高的要求.本文从内存管理硬件架构.地址空间划分和内存管理软件架构三个方面入手,尝试对内存管理的软硬件架构做一些宏观上的分析总结. 内存管理硬件架构 因为内存管理是内核最为核心的一个功能,针对内存管理性能优化,除了软件优化,硬件架构也做了很多的优化设计.下图是一个目前主流处理器上的存储器层次结构设计方案.
MMU内存管理单元
arm-linux学习-(MMU内存管理单元) 什么是MMU MMU(Memory Management Unit)主要用来管理虚拟存储器.物理存储器的控制线路,同时也负责虚拟地址映射为物理地址,以及提供硬件机制的内存访问授权.多任务多进程操作系统.(来自百度百科,对其几个点不熟悉,因此可以只考虑加粗部分) 发展历史 注意:学习一个知识点,很重要的一步是了解其为什么而存在?它的存在是为了解决什么问题?然后,在学习的过程中带着这些问题去理解.去思考. 在许多年以前,还是使用DOS或一些古老的操作系
[3]windows内核情景分析--内存管理
32位系统中有4GB的虚拟地址空间 每个进程有一个地址空间,共4GB,(具体分为低2GB的用户地址空间+高2GB的内核地址空间) 各个进程的用户地址空间不同,属于各进程专有,内核地址空间部分则几乎完全相同 虚拟地址如0x11111111, 看似这8个数字是一个整体,其实是由三部分组成的,是一个三维地址,将这个32位的值拆开,高10位表示二级页表号,中间10位表示二级页表中的页号,最后12位表示页内偏移(2^12=4kb),因此,一个虚拟地址实际上是一个三维地址,指明了本虚拟地址在哪个二级页表,
20135234mqy-——信息安全系统设计基础第十四周学习总结
第九章 虚拟存储器 主要作用: 将主存看作是一个存储在磁盘上的地址空间的高速缓存,在主存中只保护活动的区域,并根据需要在磁盘和主存之间来回传送数据: 为每个进程提供了一致的地址空间,从而简化了存储器管理: 保护了每个进程的地址空间不被其它进程破坏 9.1 物理和虚拟寻址 1.物理地址 计算机系统的主存被组织成一个由M个连续的字节大小的单元组成的数组,每字节都有一个唯一的物理地址PA. 根据物理地址寻址的是物理寻址. 2.虚拟地址 虚拟存储器被组织为一个由存放在磁盘上的N个连续的字节大小的单元组成
Hugepage介绍以及实践
在Linux 64位系统里面,默认内存是以4K的页面(Page)来管理的,当系统有非常多的内存的时候,管理这些内存的消耗就比较大;而HugePage使用2M大小的页面来减小管理开销. Hugepage的背景 操作系统对于数据的存取直接从内存要比从硬盘读写数据要快的多,但是内存是有限的,这样就引出了物理内存与虚拟内存的概念.虚拟内存是利用硬盘空间虚拟出的一块逻辑内存,这部分磁盘空间Windows下称之为虚拟内存,Linux下被称为交换空间(Swap Space). 对于这个大内存的管理(物理内存+
JZ2440 裸机驱动 第7章 内存管理单元MMU
本章目标: 了解虚拟地址和物理地址的关系: 掌握如何通过设置MMU来控制虚拟地址到物理地址的转化: 了解MMU的内存访问权限机制: 了解TLB.Cache.Write buffer的原理,使用时的注意事项: 通过实例深刻掌握上述要点: 7.1 内存管理单元MMU介绍 7.1.1 S3C2410/S3C2440 MMU特性 内存管理单元(Memory Management Unit),简称MMU,它负责虚拟地址到物理 地址的映射,并提供硬件机制的内存访问权限
热门专题
wireshark还原视频流RTMP协议
C# txt显示纯文本对齐
卸载了vs2019,再次安装缺安装不了,怎么办
基于springboot项目总结
vue禁止前端记住密码
最大后验概率估计 python
hadoop使用javaapi
element$msgbox 中加a标签
fiddler模拟3G网速改为多少毫秒
ubuntu 中文目录改英文
unity 物体拖拽
用户点击article_id
Linux cat 卡住
wordpress仪表盘定制
linux 子账号 jdk
jdbc5.7配置文件
ubuntu 系统优化
elastic search查找
notepad json格式化离线
protrll99se输出gerber文件是什么样子