首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
cv2 做8x8dct
2024-10-30
在python3下对数据分块(8x8大小)使用OpenCV的离散余弦变换DCT
在MATLAB中有blkproc (blockproc)对数据处理, 在python下没找到对应的Function, 这里利用numpy 的split(hsplit和vsplit) 对数据分块处理成8x8的小块, 然后在利用OpenCV的dct函数做变换, 同时利用idct 验证数据变换是否正确. import numpy as np import cv2 a = np.arange(256).reshape((16,16)) print("ori data: \n{}".format
机器学习进阶-图像金字塔与轮廓检测-图像金字塔-(**高斯金字塔) 1.cv2.pyrDown(对图片做向下采样) 2.cv2.pyrUp(对图片做向上采样)
1.cv2.pyrDown(src) 对图片做向下采样操作,通常也可以做模糊化处理 参数说明:src表示输入的图片 2.cv2.pyrUp(src) 对图片做向上采样操作 参数说明:src表示输入的图片 高斯金字塔:分为两种情况:一种是向下采样,一种是向上采样 下采样的原理:先与Gi进行高斯卷积即高斯滤波,再将所有偶数行和列去除,实现行和列维度缩减的目的 代码: 第一步:读入图片 第二步:使用cv2.pyrDown进行高斯金字塔的下采样 第三步:使用自己的步骤做高斯金字塔的下采样,先对图像作高
[转]Theano下用CNN(卷积神经网络)做车牌中文字符OCR
Theano下用CNN(卷积神经网络)做车牌中文字符OCR 原文地址:http://m.blog.csdn.net/article/details?id=50989742 之前时间一直在看 Michael Nielsen 先生的 Deep Learning 教程. 用了他的代码在theano下测试了下中文车牌字符的识别.由于我没有GPU,简单的在进行了16个epoch之后,识别率达到了 98.41% ,由于图像本来质量就不高,达到这个识别率,效果挺不错了. 一共 31 类 车牌中文字符数据来源于
从PyOpenCV到CV2
安装cv2 http://hyry.dip.jp/files/opencv.zip 采用cv2重写的<Python科学计算>中的实例程序 读者可以在下面的页面中搜索“opencv”,并根据Python版本下载对应的安装程序. http://www.lfd.uci.edu/~gohlke/pythonlibs/ 非官方的Windows系统Python扩展库 安装完毕之后,运行下面的程序,测试是否安装正确. import cv2import sys try: filename = sys.a
Opencv基础课必须掌握:滑动条做调色盘 -OpenCV步步精深
滑动条做调色盘 我们来想一下这个程序需要什么,首先需要一个窗口显示一切=.=(︿( ̄︶ ̄)︿废话一样): 说到调色盘除了画板也就是窗口(默认为黑色),调色就要涉及三种颜色 红色Red(我们用R表示),绿色Green(我们用G表示),蓝色Blue(我们用B表示) 我们要用三个滑动条来设置这三种颜色,涉及到一个函数 cv2.getTrackbarPos() 这个函数有五个参数,由于今天我们很基础,所以只介绍两个参数:第一个参数是滑动条的名字,第二个参数 是滑动条被放置窗口的名字. 由于opencv没
[树莓派(raspberry pi)] 02、PI3安装openCV开发环境做图像识别(详细版)
前言 上一篇我们讲了在linux环境下给树莓派安装系统及入门各种资料 ,今天我们更进一步,尝试在PI3上安装openCV开发环境. 博主在做的过程中主要参考一个国外小哥的文章(见最后链接1),不过其教程中有一个地方稍微有点问题,导致我入坑好久!这里也会着重说明下. 1.Expand filesystem 新安装系统之后,首要的工作就是扩大文件系统.因为,用SD卡安装完系统后一大部分空间实际是未被分配的: sudo raspi-config 选择7高级,然后选择“1. Expand File Sy
模块cv2的用法
一.读入图像 使用函数cv2.imread(filepath,flags)读入一副图片 filepath:要读入图片的完整路径 flags:读入图片的标志 cv2.IMREAD_COLOR:默认参数,读入一副彩色图片,忽略alpha通道 cv2.IMREAD_GRAYSCALE:读入灰度图片 cv2.IMREAD_UNCHANGED:顾名思义,读入完整图片,包括alpha通道 import cv2 img = cv2.imread('1.jpg',cv2.IMREAD_GRAYSCALE) 二
深度学习实践-强化学习-bird游戏 1.np.stack(表示进行拼接操作) 2.cv2.resize(进行图像的压缩操作) 3.cv2.cvtColor(进行图片颜色的转换) 4.cv2.threshold(进行图片的二值化操作) 5.random.sample(样本的随机抽取)
1. np.stack((x_t, x_t, x_t, x_t), axis=2) 将图片进行串接的操作,使得图片的维度为[80, 80, 4] 参数说明: (x_t, x_t, x_t, x_t) 表示需要进行串接的图片, axis = 2 表示在第三个维度上进行串接操作 2. cv2.resize(x, [80, 80]) # 将图片的维度变化为80 * 80的维度 参数说明, x为输入的图片,80, 80表示图片变化的维度 3.cv2.cvtColor(x_t, tf.COLOR_RG
深度学习原理与框架-猫狗图像识别-卷积神经网络(代码) 1.cv2.resize(图片压缩) 2..get_shape()[1:4].num_elements(获得最后三维度之和) 3.saver.save(训练参数的保存) 4.tf.train.import_meta_graph(加载模型结构) 5.saver.restore(训练参数载入)
1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变化后的图片大小,0, 0表示dx和dy, cv2.INTER_LINEAR表示插值的方式为线性插值 2.image.get_shape[1:4].num_elements() 获得最后三个维度的大小之和 参数说明:image表示输入的图片 3. saver.save(sess, path, glob
OpenCV中cv2的用法
一.读入图像 使用函数cv2.imread(filepath,flags)读入一副图片 filepath:要读入图片的完整路径 flags:读入图片的标志 cv2.IMREAD_COLOR:默认参数,读入一副彩色图片,忽略alpha通道 cv2.IMREAD_GRAYSCALE:读入灰度图片 cv2.IMREAD_UNCHANGED:顾名思义,读入完整图片,包括alpha通道 import cv2 img = cv2.imread('1.jpg',cv2.IMREAD_GRAYSCALE) 二
机器学习进阶-目标跟踪-KCF目标跟踪方法 1.cv2.multiTracker_create(构造选框集合) 2. cv2.TrackerKCF_create(获得KCF追踪器) 3. cv2.resize(变化图像大小) 4.cv2.selectROI(在图像上框出选框)
1. tracker = cv2.multiTracker_create() 获得追踪的初始化结果 2.cv2.TrackerKCF_create() 获得KCF追踪器 3.cv2.resize(frame, (w, h), cv2.INTER_AEAR) # 进行图像大小的重新变化参数说明:frame表示输入图片,(w, h) 表示变化后的长和宽, cv2.INTER_AEAR表示插值的方法 4.cv2.selectROI(‘Frame’, frame, fromCenter=False,s
机器学习进阶-光流估计 1.cv2.goodFeaturesToTrack(找出光流估计所需要的角点) 2.cv2.calcOpticalFlowPyrLK(获得光流检测后的角点位置) 3.cv2.add(进行像素点的加和)
1.cv2.goodFeaturesToTrack(old_gray, mask=None, **feature_params) 用于获得光流估计所需要的角点参数说明:old_gray表示输入图片,mask表示掩模,feature_params:maxCorners=100角点的最大个数,qualityLevel=0.3角点品质,minDistance=7即在这个范围内只存在一个品质最好的角点2. pl, st, err = cv2.calcOpticalFlowPyrLK(old_gray,
机器学习进阶-案例实战-答题卡识别判 1.cv2.getPerspectiveTransform(获得投射变化后的H矩阵) 2.cv2.warpPerspective(H获得变化后的图像) 3.cv2.approxPolyDP(近似轮廓) 4.cv2.threshold(二值变化) 7.cv2.countNonezeros(非零像素点个数)6.cv2.bitwise_and(与判断)
1.H = cv2.getPerspectiveTransform(rect, transform_axes) 获得投射变化后的H矩阵 参数说明:rect表示原始的位置左上,右上,右下,左下, transform_axes表示变换后四个角的位置 2.cv2.warpPerspective(gray, H, (width, height)) 根据H获得变化后的图像 参数说明: gray表示输入的灰度图像, H表示变化矩阵,(width, height)表示变换后的图像大小3. cv2.approx
机器学习进阶-图像特征sift-SIFT特征点 1.cv2.xfeatures2d.SIFT_create(实例化sift) 2. sift.detect(找出关键点) 3.cv2.drawKeypoints(画出关键点) 4.sift.compute(根据关键点计算sift向量)
1. sift = cv2.xfeatures2d.SIFT_create() 实例化 参数说明:sift为实例化的sift函数 2. kp = sift.detect(gray, None) 找出图像中的关键点 参数说明: kp表示生成的关键点,gray表示输入的灰度图, 3. ret = cv2.drawKeypoints(gray, kp, img) 在图中画出关键点 参数说明:gray表示输入图片, kp表示关键点,img表示输出的图片 4.kp, dst = sift.compute
机器学习进阶-图像特征harris-角点检测 1.cv2.cornerHarris(进行角点检测)
1.cv2.cornerHarris(gray, 2, 3, 0.04) # 找出图像中的角点 参数说明:gray表示输入的灰度图,2表示进行角点移动的卷积框,3表示后续进行梯度计算的sobel算子的大小,0.04表示角点响应R值的α值 角点检测:主要是检测一些边角突出来的点,对于A和B这样的面上的点而言,一个卷积框在上面移动,框中的基本像素点不发生变化, 对于像C和D边界点,只有x或者y轴方向上的平移,像素框内的像素会发生偏移,而对于E和F这样的角点而言,不管是像x轴或者向y轴平移,像素框内
机器学习进阶-项目实战-信用卡数字识别 1.cv2.findContour(找出轮廓) 2.cv2.boudingRect(轮廓外接矩阵位置) 3.cv2.threshold(图片二值化操作) 4.cv2.MORPH_TOPHAT(礼帽运算突出线条) 5.cv2.MORPH_CLOSE(闭运算图片内部膨胀) 6. cv2.resize(改变图像大小) 7.cv2.putText(在图片上放上文本)
7. cv2.putText(img, text, loc, text_font, font_scale, color, linestick) # 参数说明:img表示输入图片,text表示需要填写的文本str格式,loc表示文本在图中的位置,font_size可以使用cv2.FONT_HERSHEY_SIMPLEX, font_scale表示文本的规格,color表示文本颜色,linestick表示线条大小 信用卡数字识别: 信用卡 数字模板涉及到的内容:主要是采用模板匹配的思想 思
机器学习进阶-直方图与傅里叶变化-直方图均衡化 1.cv2.equalizeHist(进行直方图均衡化) 2. cv2.createCLAHA(用于生成自适应均衡化图像)
1. cv2.equalizeHist(img) # 表示进行直方图均衡化 参数说明:img表示输入的图片 2.cv2.createCLAHA(clipLimit=8.0, titleGridSize=(8, 8)) 用于生成自适应均衡化图像 参数说明:clipLimit颜色对比度的阈值, titleGridSize进行像素均衡化的网格大小,即在多少网格下进行直方图的均衡化操作 直方图均衡化:一般可以用来提升图片的亮度, 在上面一节中,我们可以看出在150-200之间所占的频数特别的大,频数
机器学习进阶-直方图与傅里叶变换-图像直方图 1.cv2.calc(生成图像的像素频数分布(直方图))
1. cv2.calc([img], [0], mask, [256], [0, 256]) # 用于生成图像的频数直方图 参数说明: [img]表示输入的图片, [0]表示第几个通道, mask表示掩码,通常生成一部分白色,一部分黑色的掩码图, [256]表示直方图的个数, [0, 256]表示数字的范围 图像直方图表示的是颜色的像素值,在单个或者一个范围内出现的频数,一般图像会在某一个颜色区间内呈现较高的值 一只小猫,即其(0-255)的像素点的直方图分布情况,我们可以看出其在100-20
机器学习进阶-图像金字塔与轮廓检测-模板匹配(单目标匹配和多目标匹配)1.cv2.matchTemplate(进行模板匹配) 2.cv2.minMaxLoc(找出矩阵最大值和最小值的位置(x,y)) 3.cv2.rectangle(在图像上画矩形)
1. cv2.matchTemplate(src, template, method) # 用于进行模板匹配 参数说明: src目标图像, template模板,method使用什么指标做模板的匹配度指标 2. min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(ret) # 找出矩阵中最大值和最小值,即其对应的(x, y)的位置参数说明:min_val, max_val, min_loc, max_loc 分别表示最小值,最大值,即对应的位
机器学习进阶-图像金字塔与轮廓检测-轮廓检测 1.cv2.cvtColor(图像颜色转换) 2.cv2.findContours(找出图像的轮廓) 3.cv2.drawContours(画出图像轮廓) 4.cv2.contourArea(轮廓面积) 5.cv2.arcLength(轮廓周长) 6.cv2.aprroxPloyDP(获得轮廓近似) 7.cv2.boudingrect(外接圆)..
1. cv2.cvtcolor(img, cv2.COLOR_BGR2GRAY) # 将彩色图转换为灰度图 参数说明: img表示输入的图片, cv2.COLOR_BGR2GRAY表示颜色的变换形式 2. cv2.findContours(img,mode, method) # 找出图中的轮廓值,得到的轮廓值都是嵌套格式的 参数说明:img表示输入的图片,mode表示轮廓检索模式,通常都使用RETR_TREE找出所有的轮廓值,method表示轮廓逼近方法,使用NONE表示所有轮廓都显示 3.
机器学习进阶-边缘检测-Canny边缘检测 1.cv2.Canny(进行Canny边缘检测)
1. cv2.Canny(src, thresh1, thresh2) 进行canny边缘检测 参数说明: src表示输入的图片, thresh1表示最小阈值,thresh2表示最大阈值,用于进一步删选边缘信息 Canny边缘检测步骤: 第一步:使用高斯滤波器进行滤波,去除噪音点 第二步:使用sobel算子,计算出每个点的梯度大小和梯度方向 第三步:使用非极大值抑制(只有最大的保留),消除边缘检测带来的杂散效应 第四步:应用双阈值,来确定真实和潜在的边缘 第五步:通过抑制弱边缘来完成最终的边缘检
热门专题
数据四则混合运算C语言
maven中央仓库和远程仓库
富文本编辑器的安装步骤
new和create
matlab精确到二位小数
什么是mvc什么是mtv
可以看图片cm尺寸的插件
windows bind 反向代理 配置
c语言读取目录下文件
numpy实现神经网络 波士顿房价预测
在一个系统里做的动态库,在另一个系统下可以用吗
python中怎么把txt文档保存为excel
ens33无inet
python实现工厂模式
GUILayout.Button设置位置
老毛桃安装 windows 2008 r2
Win10 登陆时不显示Adimin
macbook释放静电按键
rna测序结果基因表达量是什么
tomcat access配置响应时间