首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
cv2.MORPH_OPEN的值
2024-09-04
机器学习进阶-图像形态学操作-开运算与闭运算 1.cv2.morphologyEx(进行各类形态学变化) 2.op=cv2.MORPH_OPEN(先腐蚀后膨胀) 3.op=cv2.MORPH_CLOSE(先膨胀后腐蚀)
1.cv2.morphologyEx(src, op, kernel) 进行各类形态学的变化 参数说明:src传入的图片,op进行变化的方式, kernel表示方框的大小 2.op = cv2.MORPH_OPEN 进行开运算,指的是先进行腐蚀操作,再进行膨胀操作 3. op = cv2.MORPH_CLOSE 进行闭运算, 指的是先进行膨胀操作,再进行腐蚀操作 开运算:表示的是先进行腐蚀,再进行膨胀操作 闭运算:表示先进行膨胀操作,再进行腐蚀操作 代码: 第一步:使用cv2.imread载入
机器学习进阶-案例实战-答题卡识别判 1.cv2.getPerspectiveTransform(获得投射变化后的H矩阵) 2.cv2.warpPerspective(H获得变化后的图像) 3.cv2.approxPolyDP(近似轮廓) 4.cv2.threshold(二值变化) 7.cv2.countNonezeros(非零像素点个数)6.cv2.bitwise_and(与判断)
1.H = cv2.getPerspectiveTransform(rect, transform_axes) 获得投射变化后的H矩阵 参数说明:rect表示原始的位置左上,右上,右下,左下, transform_axes表示变换后四个角的位置 2.cv2.warpPerspective(gray, H, (width, height)) 根据H获得变化后的图像 参数说明: gray表示输入的灰度图像, H表示变化矩阵,(width, height)表示变换后的图像大小3. cv2.approx
机器学习进阶-背景建模-(帧差法与混合高斯模型) 1.cv2.VideoCapture(进行视频读取) 2.cv2.getStructureElement(构造形态学的卷积) 3.cv2.createBackgroundSubtractorMOG2(构造高斯混合模型) 4.cv2.morpholyEx(对图像进行形态学的变化)
1. cv2.VideoCapture('test.avi') 进行视频读取 参数说明:‘test.avi’ 输入视频的地址2. cv2.getStructureElement(cv2.MORPH_ELLIPSE, (3, 3)) # 构造一个全是1的kernel用于形态学的操作 参数说明:cv2.MORPH_ELLIPSE 生成全是1的kernel,(3, 3)表示size 3.cv2.createBackgroundSubtractorMOG2().apply(image) 对图像进行混合
机器学习进阶-直方图与傅里叶变化-直方图均衡化 1.cv2.equalizeHist(进行直方图均衡化) 2. cv2.createCLAHA(用于生成自适应均衡化图像)
1. cv2.equalizeHist(img) # 表示进行直方图均衡化 参数说明:img表示输入的图片 2.cv2.createCLAHA(clipLimit=8.0, titleGridSize=(8, 8)) 用于生成自适应均衡化图像 参数说明:clipLimit颜色对比度的阈值, titleGridSize进行像素均衡化的网格大小,即在多少网格下进行直方图的均衡化操作 直方图均衡化:一般可以用来提升图片的亮度, 在上面一节中,我们可以看出在150-200之间所占的频数特别的大,频数
python-opencv 图像二值化,自适应阈值处理
定义:图像的二值化,就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和白的视觉效果. 一幅图像包括目标物体.背景还有噪声,要想从多值的数字图像中直接提取出目标物体,常用的方法就是设定一个阈值T,用T将图像的数据分成两部分:大于T的像素群和小于T的像素群.这是研究灰度变换的最特殊的方法,称为图像的二值化(Binarization). 简单的阈值-(全局阈值): Python-OpenCV中提供了阈值(threshold)函数: cv2.threshold() 函数:
数学之路-python计算实战(17)-机器视觉-滤波去噪(中值滤波)
Blurs an image using the median filter. C++: void medianBlur(InputArray src, OutputArray dst, int ksize)highlight=smooth#void medianBlur(InputArray src, OutputArray dst, int ksize)" title="Permalink to this definition" style="color: rg
OpenCV计算机视觉学习(4)——图像平滑处理(均值滤波,高斯滤波,中值滤波,双边滤波)
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice "平滑处理"(smoothing)也称"模糊处理"(bluring),是一项简单且使用频率很高的图像处理方法.平滑处理的用途有很多,最常见的是用来减少图像上的噪点或者失真.在涉及到降低图像分辨率时,平滑处理是非常好用的方法. 图像滤波,就是在尽量保留图像细节特征的条件下对目
OpenCV之Python学习笔记
OpenCV之Python学习笔记 直都在用Python+OpenCV做一些算法的原型.本来想留下发布一些文章的,可是整理一下就有点无奈了,都是写零散不成系统的小片段.现在看 到一本国外的新书<OpenCV Computer Vision with Python>,于是就看一遍,顺便把自己掌握的东西整合一下,写成学习笔记了.更需要的朋友参考. 阅读须知: 本文不是纯粹的译文,只是比较贴近原文的笔记: 请设法购买到出版社出版的书,支持正版. 从书名就能看出来本书是介绍在Pytho
OpenCV-Python教程(4、形态学处理)
提示: 转载请详细注明原作者及出处,谢谢! 本文介绍使用OpenCV-Python进行形态学处理 本文不介绍形态学处理的基本概念,所以读者需要预先对其有一定的了解. 定义结构元素 形态学处理的核心就是定义结构元素,在OpenCV-Python中,可以使用其自带的getStructuringElement函数,也可以直接使用NumPy的ndarray来定义一个结构元素.首先来看用getStructuringElement函数定义一个结构元素: element = cv2.getStructurin
python-opencv在有噪音的情况下提取图像的轮廓
对于一般的图像提取轮廓,这篇博文介绍了一个很好的方法,但是对于有噪声的图像,并不能很好地捕获到目标物体. 比如对于我的鼠标,提取的轮廓效果并不好,因为噪声很多: 所以本文增加了去掉噪声的部分. 首先加载原始图像,并显示图像 img = cv2.imread("temp.jpg") #载入图像 h, w = img.shape[:2] #获取图像的高和宽 cv2.imshow("Origin", img) #显示原始图像 然后进行低通滤波处理,进行降噪 blured
使用opencv进行简单的手势检测[by Python]
代码参考于:https://github.com/rainyear/lolita/issues/8 简单的手势识别,基本思路是基于皮肤检测,皮肤的颜色在HSV颜色空间下与周围环境的区分度更高,从RGB转换到HSV颜色空间下针对皮肤颜色进行二值化,得到mask: def HSVBin(img): hsv = cv2.cvtColor(img,cv2.COLOR_RGB2HSV) lower_skin = np.array([100,50,0]) upper_skin = np.array([125
OpenCV-Python:形态学操作
常用的形态学操作:腐蚀.膨胀.开运算和闭运算 一.什么叫形态学操作 形态学操作就是改变物体的形状,比如腐蚀就是"变瘦",膨胀就是"变胖" 形态学操作一般作用于二值化图,来连接相邻的元素或分离成独立的元素.腐蚀和膨胀是针对图片中的白色部分! 白色的像素为255,黑色的像素值为0 二.腐蚀与膨胀 1. 腐蚀 腐蚀的效果是把图片"变瘦",其原理是在原图的小区域内取局部最小值.因为是二值化图,只有0和255,所以小区域内有一个0该像素点就为0: 这样原图
【python】带图片验证码的登录自动化实战
近期在跟进新项目的时候,整体的业务线非常之长,会一直重复登录退出不同账号的这个流程,所以想从登录开始实现部分的自动化.因为是B/S的架构,所以采用的是selenium的框架来实现.大致实现步骤如下: 1.环境准备 2.验证码爬取 3.识别方案选择 4.图像处理和识别 5.自动化实现 一.环境准备 系统:macOS 软件:Pycharm 语言:Python 2.7 浏览器:Chrome 70.0.35 依赖库:selenium 3.141.xlrd 1.1.aip 1.0.0.5.pytess
利用opencv进行移动物体检测
进行运动物体检测就是将动态的前景从静态的背景中分离出来.将当前画面与假设是静态背景进行比较发现有明显的变化的区域,就可以认为该区域出现移动的物体.在实际情况中由于光照阴影等因素干扰比较大,通过像素直接进行比较往往很容易造成误检.因此有不少算法被开发出来在进行前后景分离的时候对运动和其他因素造成的变动进行区分.opencv中提供了多种背景减除的算法,其中基于高斯混合模型(GMM)的cv2.BackgroundSubtractorMOG()和cv2.BackgroundSubtractorMOG2(
python中使用Opencv进行车牌号检测——2018.10.24
初学Python.Opencv,想用它做个实例解决车牌号检测. 车牌号检测需要分为四个部分:1.车辆图像获取.2.车牌定位.3.车牌字符分割和4.车牌字符识别 在百度查到了车牌识别部分车牌定位和车牌字符分割,先介绍车牌定位部分 车牌定位需要用到的是图片二值化为黑白后进canny边缘检测后多次进行开运算与闭运算用于消除小块的区域,保留大块的区域,后用cv2.rectangle选取矩形框,从而定位车牌位置 车牌字符的分割前需要准备的是只保留车牌部分,将其他部分均变为黑色背景.这里我采用cv2.gra
[OpenCV-Python] OpenCV 中的图像处理 部分 IV (二)
部分 IVOpenCV 中的图像处理 OpenCV-Python 中文教程(搬运)目录 16 图像平滑 目标 • 学习使用不同的低通滤波器对图像进行模糊 • 使用自定义的滤波器对图像进行卷积(2D 卷积) 2D 卷积 与一维信号一样,我们也可以对 2D 图像实施低通滤波(LPF),高通滤波(HPF)等.LPF 帮助我们去除噪音,模糊图像.HPF 帮助我们找到图像的边缘OpenCV 提供的函数 cv.filter2D() 可以让我们对一幅图像进行卷积操作.下面我们将对一幅图像使用平均滤波器.下面是
[OpenCV-Python] OpenCV 中的图像处理 部分 IV (六)
部分 IVOpenCV 中的图像处理 OpenCV-Python 中文教程(搬运)目录 23 图像变换 23.1 傅里叶变换目标本小节我们将要学习: • 使用 OpenCV 对图像进行傅里叶变换 • 使用 Numpy 中 FFT(快速傅里叶变换)函数 • 傅里叶变换的一些用处 • 我们将要学习的函数有:cv2.dft(),cv2.idft() 等原理 傅里叶变换经常被用来分析不同滤波器的频率特性.我们可以使用 2D 离散傅里叶变换 (DFT) 分析图像的频域特性.实现 DFT 的一个快速算法被称
OpenCV 学习笔记 04 深度估计与分割——GrabCut算法与分水岭算法
1 使用普通摄像头进行深度估计 1.1 深度估计原理 这里会用到几何学中的极几何(Epipolar Geometry),它属于立体视觉(stereo vision)几何学,立体视觉是计算机视觉的一个分支,它从同一物体的两张不同图像提取三维信息. 极几何的工作原理: 它跟踪从摄像头到图像上每个物体的虚线,然后再第二张图像做同样的操作,并根据同一物体对应的线的交叉来计算距离. 在使用 OpenCV 如何使用极几何来计算所谓的视差图,它是如图像中检测到不同深度的基本表示,这样就能够提取出一张图片的前景
guling code细节
detect_hand.py 分水岭算法: 任何一幅灰度图像都可以被看成拓扑平面,灰度值高的区域可以被看成是山峰,灰度值低的区域可以被看成是山谷.我们向每一个山谷中灌不同颜色的水,随着水的位的升高,不同山谷的水就会相遇汇合,为了防止不同山谷的水汇合,我们需要在水汇合的地方构建起堤坝.不停的灌水,不停的构建堤坝直到所有的山峰都被水淹没.我们构建好的堤坝就是对图像的分割.这就是分水岭算法的背后哲理. 但是这种方法通常都会得到过度分割的结果,这是由噪声或者图像中其他不规律的因素造成的.为了减少这种
【python-opencv】17-形态学操作-腐蚀与膨胀
形态学操作其实就是改变物体的形状,比如腐蚀就是"变瘦",膨胀就是"变胖",看下图就明白了: 形态学操作一般作用于二值化图(也可直接作用于原图),来连接相邻的元素或分离成独立的元素.腐蚀和膨胀是针对图片中的白色部分! 腐蚀 腐蚀的效果是把图片"变瘦",其原理是在原图的小区域内取局部最小值.因为是二值化图,只有0和255,所以小区域内有一个是0该像素点就为0: 这样原图中边缘地方就会变成0,达到了瘦身目的 OpenCV中用cv2.erode()函数进
热门专题
eth显示device not found
Mac 系统ftp 上传命令
dev 根据其他字段的合并合并单元格
服务器2012 用户已锁定
上传文件VM里的windows2008server r2
go list 删除
xamarin 外包
django cbv 獲取路由正則有名分組的值
d3 力导图 线条粗细
delphi调用记事本打开excel另存为csv
编写一个java程序,设计一个汽车
jsid math生成
qt 生成只有一个可执行文件
cvss scope理解
html表头固定 内容滚动
如何找到app内部文件
flutter 左右菜单联动
arptables 防arp欺骗
coalesce java 什么意思
微信协议code算法